
Spring Technical Documentation
Release 2.1.0

QuantInsti

Jan 30, 2023

CONTENTS:

1 Introduction 1
1.1 What is Spring? . 1
1.2 What it is NOT . 1
1.3 How Spring Works . 1
1.4 Platform APIs Overview . 2

2 Changelog 3
2.1 Release 2.1.0 (Jan 16, 2022) . 3
2.2 Release 2.0.0 (Nov 2, 2021) . 4

3 Event Callbacks in Strategy 7
3.1 Main Callback Functions . 7
3.2 Trade and Data Callbacks . 9
3.3 Scheduled Callback Functions . 10
3.4 Scheduling Examples . 12

4 Fetching Price Data, Tracking Algo State 15
4.1 Context Object . 15
4.2 Data Object . 18

5 Placing Orders and Other API Functions 23
5.1 Assets Fetching APIs . 23
5.2 Trading API functions . 24
5.3 Risk Management APIs . 32
5.4 Pipeline APIs . 34
5.5 Backtest Model Selection APIs . 34
5.6 Miscellaneous API functions . 35

6 Objects, Models and Constants 37
6.1 Trading Calendar . 37
6.2 Assets . 39
6.3 Orders . 44
6.4 Positions . 47
6.5 Simulation Models . 48
6.6 Miscellaneous Constants . 53

7 Built-in Library 55
7.1 Technical Indicators . 55
7.2 Technical patterns . 58
7.3 Statistical Functions . 59
7.4 Timeseries Functions and Models . 60

i

7.5 Statstical and Pricing Models . 64
7.6 Machine Learning Functions . 65
7.7 Pipeline Functions . 66
7.8 Execution Algorithms . 68
7.9 Library Objects . 71

8 Errors and Exceptions 73
8.1 Error Handling in Strategy . 73

9 How-Tos and Examples 75
9.1 How to code a trading strategy on Spring . 75
9.2 What is the Python support on Spring . 75
9.3 How to create and use variables . 76
9.4 How to fetch assets in strategy code . 77
9.5 How to place orders . 78
9.6 How to fetch price data for signal generation . 79
9.7 How to write strategy code . 80
9.8 How to check order status . 82
9.9 How to check open positions . 83
9.10 How to use stoploss and take-profit . 83
9.11 How to parameterise my strategy . 83
9.12 Good practices to follow for strategy building . 84
9.13 Things to avoid while writing a strategy . 85

10 Indices and tables 87

Python Module Index 89

Index 91

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is Spring?

Spring is a systematic trading and research platform, powered by the Blueshift from QuantInsti1. It allows users to
leverage systematic and quantitative approaches in their investing or trading.

Blueshift, the engine driving the platform, is a flexible, event-driven, style agnostic, trading and backtesting framework
for developing systematic investment strategies in Python in a fast and reliable way. This makes developing complex
(and simple) strategies easy, and moving a strategy from back-testing to live trading seamless.

Note: The platform supports Python 3.6 and newer only. We do not have any planned release for earlier versions of
Python.

1.2 What it is NOT

Spring is NOT meant for any kind of high-frequency trading (HFT). Also, Spring is a platform for trading and research.
It, in no way, recommends or guarantees the performance of a particular way of trading or investing.

1.3 How Spring Works

The Blueshift engine powering the platform, at its core, consists of an event loop designed to run trading algorithms
and a set of API functions to support functionalities required for a trading strategy (e.g. fetching tradable instrument
details, placing orders or fetching market data etc.).

A strategy code on the platform does not run directly with the Python interpreter as a regular script would. Instead,
the user strategy usually defines a set of event handling functions (or class methods) that determines how the strategy
should respond if any event occurs during its run.

The user strategy is read and parsed by the Blueshift engine and is run within its context, in the event loop. The core
engine takes care of connecting to the broker and data source(s), running the program and keeping track of the state of
the strategy (e.g. trades, orders statuses, profit and loss etc.) automatically. This allows us to focus on the trading logic
of the strategy and leave the rest to the engine.

Blueshift core engine, together with user defined strategy, forms a Complex Event Processing system (CEP). The
Blueshift engine (engine), once launched (in either backtesting or live trading mode), does its own initialization and
enters the event processing loop. In this event loop, it continuously looks for incoming events (e.g. new market data

1 Blueshift and QuantInsti are registered trademarks of QuantInsti Quantitative Learnings Pvt Ltd.

1

https://en.wikipedia.org/wiki/Complex_event_processing

Spring Technical Documentation, Release 2.1.0

arrival or an order fill event etc.), updates its own state and calls the appropriate handler(s) defined by the user strategy
at each loop iteration.

The strategy codes (strategy, a Python script or module) written by users define a set of callback functions that are
called by the engine when the specific event occurs. In addition, users can also use the scheduling functions for finer
control.

User defined strategy has no direct access to the event loop or its internal variables. Instead, all interactions with the
algo are achieved through a set of API functions (detailed below) and by exposing two special variables -context
and data. All data queries are directed through this data object. All algo state related queries (e.g. the cash in the
account, current positions etc.) are directed through the context object.

This simple event loop architecture allows blueshift to run any strategies that can be coded, while keeping the interface
between the backtesting and live trading consistent.

1.4 Platform APIs Overview

The APIs available on the platform can be divided into below broad categories.

• Callback functions
The callback functions are the entry points to the algo event loop. These are based on the lifetime events
of the strategy. See callback APIs for more on these. All of these callback functions accept the context
variable as the first argument and the data variable as the second argument (with the exception of initialize
and analyze).

• Scheduling functions
Scheduling functions allow finer control of event handling by precisely defining repetitive or one-time event
handlers. See schedule APIs for more on these. These event handlers also accept two variables - context
and data.

• Asset and Data fetching APIs
Use the current and history method of the data object to fetch current and historical data. Use the
symbol function (see assets) to fetch supported assets.

• Trading APIs
Use the base order function, or its derivatives (like order_target and order_target_percent) for
placing orders. Use the cancel_order to cancel an open order. Use get_open_orders to fetch current
open orders. For more details, see the trading APIs.

• Pipeline APIs
Use pipelines for dynamically selecting and filtering the very large asset universe. See pipeline APIs for
more details.

• Risk management and other APIs
A host of risk management APIs to put constraints on the running algo - see risk management APIs for
details. Fine tune backtest runs using backtest model selection APIs. Refer to miscellaneous APIs for
various useful functions like get_datetime and record.

• Context and Data Objects Attributes
Use the context object methods for querying the state of the running algo (e.g. querying current portfolio
and account states). Use the Data Object methods for fetching current or historical data.

Danger: Backtesting and especially automated trading is far from fire-and-forget. Many things can go wrong
(although we try our best to catch and highlight such cases by design). Also there are things beyond control of the
platform that can go wrong. Like the strategy code going rogue or the datafeed being corrupt or the connectivity
unstable. Be careful and remember to take appropriate precautions.

2 Chapter 1. Introduction

CHAPTER

TWO

CHANGELOG

2.1 Release 2.1.0 (Jan 16, 2022)

Highlights from release 2.1.0 are listed below

2.1.1 Breaking Changes (2.1.0)

• Realtime callback function on_data is now upgraded as a main callback function. Instead of adding a handler
using the said function, use the function directly to handle arriving events. This also applies to on_trade as well.
As a consequence, functions to remove such event handlers (off_data and off_trade) are now deprecated and
will throw errors.

• All imports from blueshift_library are now deprecated and will throw errors. Point all such imports to
blueshift.library instead.

• NSE futures and options now include lotsize information (previously was 1). Since assets can be traded in
multiple of lotsizes only (if not ‘fractional’), the trading capital must be high enough for an order to go through.
For e.g. you could trade 1 unit of NIFTY futures before, but now minimum order size must be 50 (or whatever
the current lotsize is).

• Error handling changes: Repeated errors will now cause the algo to exit after a threshold is breached.

2.1.2 New Features (2.1.0)

• Additional event scheduling functions schedule_once and schedule_later. See schedule APIs for more.

• Support for advanced algo order type. See Advanced Algo Orders for more.

• Option backtesting is now fully supported (for NSE dataset only).

• Built-in support for stoploss and take profit behaviour. For more on this see Stoploss and Take-profit.

• Add backtest support for order modification.

• Enriched Order object - now includes latency metrics as well as parent algo ID.

3

Spring Technical Documentation, Release 2.1.0

2.1.3 Bug Fixes and Improvements (2.1.0)

• Fix reconciliation error in case broker streaming update disconnects (force an API call).

2.2 Release 2.0.0 (Nov 2, 2021)

Warning: Blueshift 2.0 includes breaking change. See below for more details.

The new Blueshift engine improves on several aspects of strategy development. Following are major highlights

• Breaking Change - move away from zipline to Blueshift Python engine.

• Breaking change - Multi-assets, multi-fields history method now returns MultiIndex dataframes.

• Breaking change - Attributes for various objects (e.g. asset, position, account, portfolio etc.) may have
different names. See the documentation for the attribute names to use.

• Breaking change - The performance argument to analyze function has new values. See the documentation
for more details.

• Extended liquidity filtered universe for the US and Indian markets.

• Realistic simulation with explicit margin models.

• Realistic models for margin and slippage.

• Historical bid-ask slippage modelling of forex backtest.

• Pipeline API support in live trading. See Pipeline APIs for more details.

• Fractional trading - to support fractional trading, the data-type for asset quantity wherever applicable (e.g.
order.quantity or position.quantity) are now float type instead of int.

2.2.1 Breaking Changes

Update your strategies to point to blueshift in all places that currently imports from zipline, as shown below

change below
#from zipline.finance import slippage, commission
#from zipline.api import symbol
#from zipline.pipeline import Pipeline
to point to blueshift
from blueshift.finance import slippage, commission
from blueshift.api import symbol
from blueshift.pipeline import Pipeline

Update your strategies to adapt to Pandas MultiIndex dataframes (if required). Otherwise, it may crash. See Upgraded
Data Interface.

from blueshift.api import symbol

def initialize(context):
context.universe = [symbol('AAPL'), symbol('MSFT')]

(continues on next page)

4 Chapter 2. Changelog

Spring Technical Documentation, Release 2.1.0

(continued from previous page)

def handle_data(context, data):
a multi-asset, multi-field history call
prices = data.history(context.universe,['close','volume'],10,'1m')

price for AAPL
this is deprecated
appl_price = prices.minor_xs(context.universe[0])
use below to replace minor_xs calls.
appl_price = prices.xs(context.universe[0])

For other breaking changes, carefully analyse your existing strategy code and refer to the respective documentation
for supported attribute names and performance columns. If you have trouble, feel free to contact us at blueshift-
support@quantinsti.com. For more on Pandas MultiIndex, see the official documentation

2.2.2 Changes in Blueshift 2.0.0

Blueshift 2.0 release moves away from zipline and introduces major upgrades in many areas, while retaining the
existing APIs unchanged. A few improvements are highlighted below:

Extended and Updated Asset Universes

We move to a new liquidity based universe (compared to external benchmark based universe earlier) with assets size
substantially expanded.

For both the US and Indian markets, we have extended the universe to include liquid ETFs. Each of these universes
now tracks top 1000 liquid instruments (equities and ETFs) that trades above a certain price thresholds (avoiding penny
stocks). In addition, for the Indian markets, all NSE equity futures instruments are included as well. The forex universe
remains unchanged.

More Realistic Simulation Behaviour

The simulation engine is re-written to be more realistic with the introduction of an explicit margin model.

The default US execution now is modelled on a Regulation T type margin account - with 50% flat margin require-
ments (That is, 2x buying power). This avoids the earlier (somewhat strange) behaviour of unlimited (infinite) buying
powers. For example, using a $5,000 account to take a position of more than $10,000 worth of net exposure will now
throw an insufficient fund error and will stop the backtest, instead of continuing with unrealistic assumptions.

The execution model for the Indian market now assumes cash transactions in the equity/ ETFs segment and margin
transactions in the futures segment (with default 10% flat margin). Forex is also explicitly modelled as margin
trading with default 5% flat margin.

The default slippage for equities (and futures) continue to be Volume based slippage (a very common model). For
forex, however, we have moved to a historical bid-ask based slippage model. This avoids the high sensitivity of forex
backtest to trading cost assumptions and produces more accurate results.

In addition, we have introduced stringent and up to the minute checks for backtest account solvency. If your backtest
equity is in the negative on a close of business (i.e. a margin call from the broker), the backtest will stop. In such cases,
you should reduce the leverage level in your strategy and try to run again.

A couple of things you still need to be careful while testing your strategy

1. The Reg T account does not track or flag pattern day trading.

2.2. Release 2.0.0 (Nov 2, 2021) 5

mailto:blueshift-support@quantinsti.com
mailto:blueshift-support@quantinsti.com
https://pandas.pydata.org/docs/user_guide/advanced.html

Spring Technical Documentation, Release 2.1.0

2. The cash equities account does not enforce long-only. This means on a short sell, it will credit the whole
transaction value to the backtest account. You can enforce long-only behaviour by using the set_long_only
API method.

Changes in Ordering function

With the introduction of the margin model, we have also introduced a 2% margin for order_target_percent. This
now calculates the target value based on current portfolio value, after a 2% haircut. This is applicable only for MARKET
orders. For LIMIT orders, no such haircut will be applied.

Also, all targeting type order functions will now take into account the pending amount of orders in that asset. This is
in addition to considering the existing position in that asset.

Upgraded Data Interface

The data.history method, for multiple assets and multiple fields, will now return Pandas MultiIndex Dataframe
(instead of the deprecated Panel data). The required changes in your strategy code is very minimal. Instead of accessing
the data for a given asset using prices.minor_xs(asset), you need to use prices.xs(asset).

Using MultiIndex dataframes over Panel data has several advantages (apart from the obvious deprecation). The input
data for different assets now need not be homogeneous. This is a more realistic scenario as it does not enforce an
unnatural requirement of every asset in the universe to have a trade every minute of every business day.

6 Chapter 2. Changelog

CHAPTER

THREE

EVENT CALLBACKS IN STRATEGY

Blueshift is an event-driven engine. The core engine implements the event loop. The user strategy implements a set
of callback functions (i.e. event handlers) that are called by the event loop at defined events. The whole strategy logic
is structured by responding to events as and when they occur. Blueshift strategies can respond to three types of events
during its run.

• Lifetime Events
These are events generated by the Blueshift event loop based on the lifetime epochs of the strategy. They
are summarised under the Main Callback Functions below.

• Trade and Data Events
These are events that are triggered once an order is (potentially partially) filled or on arrival of new data
points. They work differently in backtest or real-time trading. See Trade and Data Callbacks below.

• Time-based Events
These are events scheduled by the user (using one of the scheduling functions). These are summarised
under the Scheduled Callback Functions section.

3.1 Main Callback Functions

Lifetime event handlers are based on the epoch of the strategy run. This includes the following:

3.1.1 Initialize

initialize(context)
This is the first entry point function. initialize is called when at the beginning of an algorithm run, only once.
For backtest, the call time is at midnight of the start date of the backtest run. For live trading, this is called at the
start of the execution as soon as possible.

Parameters
context (context object.) – The algorithm context.

User program should utilise this function to set up the algorithm initialization (parameters, trading universe, function
scheduling, risk limits etc).

Warning: A valid strategy script/ module must have this function defined.

7

Spring Technical Documentation, Release 2.1.0

3.1.2 Before Trading Start

before_trading_start(context, data)
This function is called at the beginning of every trading session (day). For backtest, this is called 30 minutes
before the regular market open hour everyday. For live trading, this is called 30 minutes before the market opens
each day, or just after (around a minute) of the initialize call at the start on the execution start day (in case it
is already trading hours or less than 30 minutes remaining from the opening hour).

Parameters

• context (context object.) – The algorithm context.

• data (data object.) – The algorithm data object.

User program should utilise this function to set up daily initialization (e.g. profit and loss, model re-evaluation etc.)

Warning: User strategy should not depend on the exact time of invocation of this handler function. The only
thing that is guaranteed is that it will be called only once per session and will be called before any handle data or
scheduled functions.

3.1.3 Handle Data

handle_data(context, data)
This function is called at every clock beat, i.e. every iteration of the event loop (usually at every minute bar).

Parameters

• context (context object.) – The algorithm context.

• data (data object.) – The algorithm data object.

User program should utilise this function to run their core algo logic if the algorithm needs to respond to every trading
bar (every minute). For algorithms (or functions) that need to respond at a lower scheduled frequency, it is more efficient
to use the scheduling API function to handle such cases.

Note: If the clock frequency is one minute (which is the case at present on Blueshift), this function is equivalent to a
scheduled function with time_rule as every_nth_minute(1).

3.1.4 After Trading Hours

after_trading_hours(context, data)
This function is called at the end of every session (every day) around 5 minutes after the last trading minute
(market close).

Parameters

• context (context object.) – The algorithm context.

• data (data object.) – The algorithm data object.

User program should utilise this function to do their end-of-day activities (e.g. update profit and loss, reconcile, set up
for next day).

8 Chapter 3. Event Callbacks in Strategy

Spring Technical Documentation, Release 2.1.0

Warning: User strategy should not depend on the exact time of invocation of this handler function. The only thing
that is guaranteed is that it will be called only once per session and will be called after the end of the regular market
hours.

3.1.5 Analyze

analyze(context, performance)
This function is called only once, at the end of an algorithm run, as soon as possible.

Parameters

• context (context object.) – The algorithm context.

• performance (pandas.DataFrame) – The algorithm performance.

Note: The performance object is a DataFrame with algo performance captured at daily intervals. The dataframe
timestamps are the timestamps for after_trading_hours calls. The columns include some of the algo account fields
as well the profit and loss (pnls) metrics.

User program can implement this method to add custom analysis of backtest results.

3.2 Trade and Data Callbacks

Attention: only available for live trading, for brokers supporting streaming for data and trade updates.

These callback APIs allows the user strategy to respond to the markets events as it happens (in real-time for live mode).

3.2.1 On Data

on_data(context, data)
This event handler is invoked at arrival of new data points. This function is called at every clock tick, i.e. every
iteration of the event loop (usually at every minute bar) in backtest mode. In realtime mode, this is invoked
only if the broker supports real-time data streaming and a new data point has been made available. In the case
of the latter, only instruments that the algo has subscribed to can trigger a call to this function.

Parameters

• context (context object.) – The algorithm context.

• data (data object.) – The algorithm data object.

Important: The on_data event handler is called only when triggered by the underlying broker. For that to happen,
the broker must support streaming data (market data websockets or socketIO API), as well as the strategy must have
subscribed to at least one instrument for streaming data. There is no explicit API to subscribe to streaming data, but
curret or history will automatically trigger data subscriptions for the queried assets. If you are using this handler, make
sure you have triggered a call to one of these methods to enable subscription. Without it, the handler will never be
called.

3.2. Trade and Data Callbacks 9

Spring Technical Documentation, Release 2.1.0

Warning: The callback function must be short and quick to avoid creating a backlog. Adding long running
funtions may lead to the algo crashing. Also, a temporary network disconnection will cause this event handler to
stop triggering (till the connection is restored). To make sure your strategy logic is robust, you can also put the
same logic inside handle_data to make sure the strategy logic is triggered at least once every minute, even if there
is a disconnection. Of course, this depends on the specific need of a given strategy.

See also:

See available callback types blueshift.api.AlgoCallBack .

3.2.2 On Trade

on_trade(context, data)
This event handler is invoked when an order placed by the strategy is filled. This function is called when the
simulator fills an order in backtest mode or paper trading mode. In realtime mode, this is invoked only if the
broker supports real-time order update streaming and an order has been filled.

Parameters

• context (context object.) – The algorithm context.

• data (data object.) – The algorithm data object.

See also:

See available callback types blueshift.api.AlgoCallBack .

Warning: The callback function must be short and quick to avoid creating a backlog. Adding long running
funtions, may lead to the algo crashing.

3.3 Scheduled Callback Functions

The scheduled event callbacks provide a way to schedule a callback function (with signature func(context, data))
based on a date and time based rule. There is no limit on how many callbacks can be scheduled in such a manner. But
only one callback can be scheduled at each call of the schedule_function.

3.3.1 Schedule Once

TradingAlgorithm.schedule_once(callback)
Add a callback to be called once at the next event processing cycle. The callback must have the standard call
signature of f(context, data). The handler will be called in the next clock event during regular market hours,
as soon as possible.

Parameters
callback (callable) – Callback function to run.

Note:

• This schedules the callback to run one time only. For repetitive callbacks, use schedule_function below

• The callback can use this function to schedule itself recursively, if needed.

10 Chapter 3. Event Callbacks in Strategy

Spring Technical Documentation, Release 2.1.0

3.3.2 Schedule Later

TradingAlgorithm.schedule_later(callback, delay)
Add a callback to be called once after a specified delay (in minutes). The callback must have the signature
f(context, data). The callback will be triggered during the market hour only.

Parameters

• callback (callable) – Callback function to run.

• delay (number) – Delay in minutes (can be fractional).

Note:

• This schedules the callback to run one time only. For repetitive callbacks, use schedule_function below

• The callback can use this function to schedule itself recursively, if needed.

• You can use a fractional number to run a function at higher frequency resolution than minute. For exam-
ple specifying delay=0.1 will run the callback after 6 seconds. This is only applicable for live runs. For
backtests, it will fall back to one minute minimum. The minimum delay that can be specified is 1 second.

Warning: There is no guarantee the function will be called at the exact delay, but if it is called, it will be
called at least after the specified delay amount.

3.3.3 Schedule Function

TradingAlgorithm.schedule_function(callback, date_rule=None, time_rule=None)
Schedule a callable to be executed repeatedly by a set of date and time based rules. Schedule function can only
be triggered during trading hours. The callable in the schedule function will be run before handle_data for that
trading bar. The callback must accept two arguments - context and data.

Parameters

• callback (function) – A function with signature f(context, data).

• date_rule (see blueshift.api.date_rules) – Defines schedules in terms of dates.

• time_rule (see blueshift.api.time_rules) – Defines schedules in terms of time.

Warning:

• This method can only be used within the initialize function. Attempting to set a scheduled callback
anywhere else will raise error and crash the algo.

• The offset should be meaningful and always non-negative. For e.g. although the hours offset can be
maximum 23, using such an offset is not meaningful for shorter trading hours (unless it is a 24x7
market).

• In live trading, there is no guarantee that the scheduled function will be called at exactly at the scheduled
date and time. It may be delayed if the algorithm is busy with some other function. The function is
guaranteed to be called no sooner than the scheduled date and time, and as soon as possible after that.

3.3. Scheduled Callback Functions 11

Spring Technical Documentation, Release 2.1.0

Date Rules

class blueshift.api.date_rules

Date rules define the date part of the rules for a scheduled function call. The supported functions are as below
(further subjected to time rule). The days_offset parameter below (if applicable) must be int (positive), and
it must not be greater than 3 for week_start/week_end and must not be greater than 15 for month_start and
month_end.

• every_day(): called every day.

• week_start(days_offset=0): days_offet days after the first trading day of the week.

• week_end(days_offset=0): days_offet days before the last trading day of the week.

• month_start(days_offset=0): days_offet days after the first trading day of the month.

• month_end(days_offset=0): days_offet days before the last trading day of the month.

• on(dts): called every day in the list dts (must be list of pandas Timestamps or DatetimeIndex).

Time Rules

class blueshift.api.time_rules

time rules defines the time part of the rules for a scheduled function call. The supported functions are as below
(further subjected to date rule).

The hours parameter below (if applicable) must be int, (positive) and it must not be greater than 23. The
minutes parameter below (if applicable) must be int (positive) and must not be greater than 59.

• market_open(minutes=0, hours=0): called after hours and minutes offset from market open.

• on_open(minutes=0, hours=0): Alias for market_open.

• market_close(minutes=0, hours=0): called after hours and minutes offset before market close.

• on_close(minutes=0, hours=0): Alias for market_close.

• every_nth_minute(minutes=1): called every n-th minute during the trading hours.

• every_nth_hour(cls, hours=1): called every n-th hour during the trading hours.

• every_hour(): called every hours during the trading day.

• at(dt): Called at the given time dt (must be a datetime.time object).

3.4 Scheduling Examples

3.4.1 Repetitive Logic with Scheduling

The below code shows examples of setting up a monthly callback function, to be called on the first business day of each
month, 30 minutes before the market close.

from blueshift.api import schedule_function, date_rules, time_rules
from blueshift.api import get_datetime

def initialize(context):
schedule_function(myfunc,

date_rule=date_rules.month_start(),
(continues on next page)

12 Chapter 3. Event Callbacks in Strategy

Spring Technical Documentation, Release 2.1.0

(continued from previous page)

time_rule=time_rules.market_open(minutes=30))

def myfunc(context, data):
print(f'scheduled function called at {get_datetime()}')

3.4.2 Responsive Strategy with Scheduling

The below code shows examples of placing a limit order and then updating the order to optimize time to fill and fill
price. The algo terminates once the order is executed.

from blueshift.api import schedule_later, schedule_once, symbol, terminate
from blueshift.api import terminate, order, update_order, get_order

def initialize(context):
context.asset = symbol('AAPL')
context.order_id = None
schedule_once(myfunc) # call as soon as ready

def myfunc(context, data):
if context.order_id is None:

context.order_id = order(context.asset, 1)
if not context.order_id:

raise ValueError(f'something went wrong.')

schedule_later(myfunc, 1) # call again after one minute
return

o = get_order(context.order_id)
if o.is_open():

px = data.current(context.asset, 'close')
update_order(context.order_id, price=px)
schedule_later(myfunc, 1) # call again after one minute

else:
we are done
terminate(f'order executed, terminate now.')

If you are using schedule_once or schedule_later recursively, carefully follow your logic and make sure the
recursion ends where it needs to.

3.4. Scheduling Examples 13

Spring Technical Documentation, Release 2.1.0

14 Chapter 3. Event Callbacks in Strategy

CHAPTER

FOUR

FETCHING PRICE DATA, TRACKING ALGO STATE

Blueshift callback functions are usually called with one or two arguments - context and data. These are internally
maintained objects that provide useful functionalities to the algo. User strategy can use the context object to query about
the current state of the algo, including its profit-loss, positions, leverage or other related information. For fetching price
data, the data object is used. See below for more.

Note: The context and data variables are maintained by the platform and are made available to most callback APIs
automatically. You need not instantiate these objects on your own. Also do not override their internal methods, else
the algo will crash with error.

4.1 Context Object

The Blueshift engine uses the internal context object to track and keep the various state metrics of the running strategy
up-to-date.

The context object is an instance of an internal class as below. User strategy code never instantiates this object.
This object is created and maintained by the platform core engine and provides interfaces to the current context of the
running algorithm, including querying the current order status and portfolio status. The context object is the first
(and sometimes the only) argument to all platform callback functions.

class blueshift.algorithm.context.AlgoContext

The algorithm context encapsulates the context of a running algorithm. This includes tracking internal objects
like blotter, broker interface etc, as well as account, portfolio and positions details (see below). The context
object is also useful to store user-defined variables for access anywhere in the strategy code.

Warning: Once the context is initialised, its core attributes (i.e. non-user defined attributes) are read-only.
Attempting to overwrite them will throw AttributeError and will crash the algo.

See also:

create and use variables

15

Spring Technical Documentation, Release 2.1.0

4.1.1 Context Attributes

AlgoContext.name

return the name (str) of the current algo run.

AlgoContext.mode

return the run mode (enum) of the current run.

See also:

see Algo Modes and Other Constants for allowed values and interpretation.

AlgoContext.execution_mode

return the execution mode (enum) of the current run.

See also:

see Algo Modes and Other Constants for allowed values and interpretation.

AlgoContext.trading_calendar

Returns the current trading calendar object.

See also:

See documentation for Trading Calendar.

AlgoContext.record_vars

The recorded var dataframe (pandas.DataFrame) as generated by a call to the API function record.
The column names are recorded variable names. Variables are recorded on a per-session (i.e. daily)
basis. A maximum of 10 recorded variables are allowed.

Warning: Adding recorded variables may slow down the speed of a backtest run.

See also:

See details in blueshift.algorithm.algorithm.TradingAlgorithm.record .

AlgoContext.pnls

Returns historical (daily) profit-and-loss information since inception. This is a pandas.Dataframe
with the following columns:

• algo_returns: daily returns of the strategy

• algo_cum_returns: cumulative returns of the strategy

• algo_volatility: annualised daily volatility of the strategy

• drawdown: current drawdown of the strategy (percentage)

Note: The timestamp for each day is the end-of-day, except the current day with the timestamp of
most recent computation.

AlgoContext.orders

return a list of all open and closed orders for the current blotter session. This is a dict with keys as
order IDs (str) and values as order object.

16 Chapter 4. Fetching Price Data, Tracking Algo State

Spring Technical Documentation, Release 2.1.0

AlgoContext.open_orders

return all orders currently open from the algorithm. This is a dict with keys as order IDs (str) and
values as order object.

4.1.2 Portfolio and Account

The context objects provides interfaces to algo account and portfolio through attributes context.account and
context.portfolio accessible from the user strategy.

AlgoContext.account

Return the account object (a view of the underlying trading account).

The account object has the following structure. All these attributes are read-only.

Attribute Type Description
margin float Total margin posted with the broker
leverage float Gross leverage (gross exposure / liquid asset value)
gross_leverage float Gross leverage (gross exposure / liquid asset value)
net_leverage float Net leverage (net exposure / liquid asset value)
gross_exposure float Gross (unsigned sum) exposure across all assets at last

updated prices
long_exposure float Total exposures in long positions
short_exposure float Total exposures in short positions
long_count int Total assets count in long positions
short_count int Total assets count in short positions
net_exposure float Net (signed sum) exposure across all assets at last up-

dated prices
net_liquidation float Sum of cash and margin
commissions float Net commissions paid (if available)
charges float Net trading charges paid (if available)
to-
tal_positions_exposure

float Gross (unsigned sum) exposure across all assets at last
updated prices

available_funds float Net cash available on the account
to-
tal_positions_value

float Total value of all holdings

Warning: Running multiple strategies in the same account may lead to misleading values of
these attributes.

AlgoContext.portfolio

Return the current portfolio object. Portfolio is a view of the current state of the algorithm, including
positions.

The attributes (read-only) of the portfolio object are as below:

4.1. Context Object 17

Spring Technical Documentation, Release 2.1.0

Attribute Type Description
portfolio_value float Current portfolio net value
positions_exposure float Present gross exposure
cash float Total undeployed cash
starting_cash float Starting capital
returns float Cumulative Algo returns
positions_value float Total value of holdings
pnl float Total profit or loss
start_date Timestamp Start date of the algo
positions dict Positions dict (see below)

The positions attribute is a dictionary with the current positions. The keys of the dictionary are
Asset objects. The values are Position objects.

The following example shows how to access account and positions data within the strategy code.

def print_report(context):
account = context.account
portfolio = context.portfolio
positions = portfolio.positions

for asset in positions:
position = positions[asset]
print(f'position for {asset}:{position.quantity}')

print(f'total portfolio {portfolio.portfolio_value}')
print(f'exposure:{account.net_exposure}')

def before_trading_starts(context, data):
print_report(context)

4.2 Data Object

The data object is the second argument to platform callback functions (where applicable). This provides an interface
to the user strategy to query and fetch data.

4.2.1 Fetching Current Data

class blueshift_data.readers.data_portal.DataPortal

DataPortal class defines the interface for the data object in the callback functions. It defines two basic methods
- current and history. User strategy should use these methods to query and fetch data from within a running
algo.

abstract current(assets, columns)
Return last available price. If either assets and columns are multiple, a series is returned, indexed by assets
or fields, respectively. If both are multiple, a dataframe is returned. Otherwise, a scalar is returned. Only
OHLCV column names are supported in general. However, for futures and options, open_interest is
supported as well.

Parameters

18 Chapter 4. Fetching Price Data, Tracking Algo State

Spring Technical Documentation, Release 2.1.0

• assets (asset object or a list of assets.) – An asset or a list for which to fetch data.

• columns (str or a list.) – A field name or a list of OHLCV columns.

Returns
current price of the asset(s).

Return type
float (int in case of volume), pandas.Series or pandas.DataFrame.

Warning: The data returned can be a NaN value, an empty series or an empty DataFrame, if there are
missing data for the asset(s) or column(s). Also, the returned series or frame may not contain all the
asset(s) or column(s) if such asset or column has missing data. User strategy must always check the
returned data before further processing.

4.2.2 Querying Historical Data

class blueshift_data.readers.data_portal.DataPortal

DataPortal class defines the interface for the data object in the callback functions. It defines two basic methods
- current and history. User strategy should use these methods to query and fetch data from within a running
algo.

abstract history(assets, columns, nbars, frequency)
Returns given number of bars for the assets. If more than one asset or more than one column supplied,
returns a dataframe, with assets or fields as column names. If both assets and columns are multiple, returns
a multi-index dataframe with columns as the column names and asset as the second index level. For a single
asset and a single field, returns a series. Only OHLCV column names are supported. However, for futures
and options, open_interest is also supported.

Parameters

• assets (asset object or a list of assets.) – An asset or a list for which to fetch data.

• columns (str or a list.) – A field name or a list of OHLCV columns.

• nbars (int) – Number of bars to fetch.

• frequency (str) – Frequency of bars (either ‘1m’ or 1’d’).

Returns
historical bars for the asset(s).

Return type
pandas.Series or pandas.DataFrame.

Warning: The data returned can be an empty series or an empty DataFrame, if there are missing
data for the asset(s) or column(s). Also, the returned series or frame may not contain all the asset(s)
or column(s) if such asset or column has missing data. In addition, for multi-indexed DataFrame, user
strategy code must not assume aligned data with same timestamps for different assets (however, columns
will always be aligned for a given asset). User strategy must always check the returned data before
further processing.

Changed in version 2.1.0: - The frequency parameter now supports extended specifications, in addition to (1d and
1m). This can be added as Pandas frequency format, e.g. 5T, 30T or 1H for 5-minute, 30-minute and 1-hour candles
respectively. This is primarily designed for live trading and using this in backtest can be very slow (as the underlying

4.2. Data Object 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Spring Technical Documentation, Release 2.1.0

data is stored only in minute or daily format and other frequencies are resampled on-the-fly). The allowed parameters in
live trading depends on the broker support, i.e. will fail if the broker does not support the particular candle frequency.

Important:

• These methods support the OHLCV (“open”,”high”,”low”,”close” and “volume”) columns for all assets (except
options), for backtests as well as live trading. For non-tradable assets (e.g. market index), “volume” may be
zeros or missing. For options, open, high, low and volume fields are not available (see below for extra fields).

• For backtest, apart from OHLCV columns, “open_interest” is also available for futures and options assets. This
may not be available in live trading if the broker supports streaming data but does not support open interest in
streaming data.

• For backtest, when options asset(s), we can specify greeks, implied vol and ATMF forward as field names as
well. Use “implied_vol” for the implied volatility levels and “atmf” for the prevailing at-the-money futures level.
The supoprted greeks are “delta”, “vega”, “gamma” and “theta”. The greek levels are computed using Black 76
model, on-the-fly, and may not be stable near the expiry. These fields may not be available in live trading (but
user strategy can compute them easily on-the-fly).

• These methods will handle a rolling asset specifications by picking the correct asset at each timestamp for which
data is returned. For example, querying for symbol(‘NIFTY-ICE+100’) for last 20 minutes will return the 100
out ATM call as applicable for each of the minutes (although the underlying levels, and hence the actual strikes
may vary).

The following example shows how to access current and historical data and what are the expected data types of the
return values in various cases.

from blueshift.api import symbol

def initialize(context):
context.universe = [symbol("AAPL"), symbol("MSFT")]

def before_trading_start(context, data):
this returns a float value
px = data.current(context.universe[0], 'close')

this returns an int value
px = data.current(context.universe[0], 'volume')

this returns a pandas.Series with the columns in the index
px = data.current(context.universe[0], ['open','close'])

this returns a pandas.Series with the assets in the index
px = data.current(context.universe, 'close')

this returns a pandas.DataFrame with assets in the index
px = data.current(context.universe, ['open','close'])

px1 is a Series with timestamps as index
px1 = data.history(context.universe[0], "close", 3, "1m")

px2 is DataFrame with timestamp index and field names as columns
px2 = data.history(context.universe[0], ['open','close'], 3, "1m")

(continues on next page)

20 Chapter 4. Fetching Price Data, Tracking Algo State

Spring Technical Documentation, Release 2.1.0

(continued from previous page)

px3 is a DataFrame with timestamp index and assets as columns
px3 = data.history(context.universe, "close", 3, "1m")

px4 is a multi-index Frame with field names as columns, asset as the second index␣
→˓level

px4 = data.history(context.universe, ["open","close"], 3, "1m")

to fetch all fields for an asset, use `xs`
this returns a regular Dataframe with columns as field names
asset_o_price = px4.xs(context.universe[0])

to fetch a field for all assets, use subsetting
this returns a regular Dataframe with columns as assets
close_prices = px4['close']

Blueshift manages data in multiple layers. Actual raw data is stored internally, through a class named DataStore.
The core implementation of the DataStore class uses . The DataStore class provides low-level APIs to read and
write data (from disk or a streaming source such as a websocket, or from an in-memory object). A high-level class
Library handles (potentially multiple) DataStore instances with defined dispatch functionalities (to route a data
query to appropriate store, among many). This Library class implements the DataPortal interface above. The
algo simulation queries this Library instance to fetch current data or data history.

4.2. Data Object 21

Spring Technical Documentation, Release 2.1.0

22 Chapter 4. Fetching Price Data, Tracking Algo State

CHAPTER

FIVE

PLACING ORDERS AND OTHER API FUNCTIONS

Note: Most API functions in Blueshift are implemented as methods of the main algorithm class TradingAlgorithm.
In the documentation below, if you see a function is documented as TradingAlgorithm.funcname, then the API func-
tion funcname can be usually imported in the strategy code from blueshift.api module (as from blueshift.api
import funcname) and can be used as regular function. A reference to the current running algorithm is automatically
inserted.

5.1 Assets Fetching APIs

Blueshift treats securities as asset objects of various kinds. To refer to a tradable security you must use an asset object.
The API function symbol converts a security symbol to an asset object.

TradingAlgorithm.symbol(symbol_str: str, dt=None, *args, **kwargs)
API function to resolve a symbol string to an asset.

Parameters

• symbol_str (str) – The symbol of the asset to fetch.

• dt (timestamp) – Optional datetime argument.

Returns
the asset object.

Raises
SymbolNotFound exception if no matching asset found.

TradingAlgorithm.symbols(symbols, dt=None, *args, **kwargs)
API function to resolve a list of symbols to assets.

Parameters
symbols (list) – The list of symbols.

Returns
A list of asset objects.

Raises
SymbolNotFound exception if no matching asset found.

TradingAlgorithm.get_dated_asset(asset)
API function to fetch dated asset for a rolling asset.

Parameters
asset (asset object.) – asset to convert to corresponding dated asset.

23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Spring Technical Documentation, Release 2.1.0

For more on assets, see assets. For more on how to use symbols to refer to available instruments, see asset symbology.

Important: The symbol function will resolve a ticker name or asset symbol to an asset object representation applicable
for the time at which the method was called. For example, symbol(“NIFTY-W0CE+0”) will refer to the first the current
weekly ATM call at the time when the method were called. Calling the same method later can refer to a different
instruments (e.g. when the underlying has moved and the ATM strike is now at a different level than earlier).

5.2 Trading API functions

Warning: While Blueshift supports running multiple strategies under a single account, this may lead to erroneous
results. We recommend running a single algo on a broker account in live or paper trading.

5.2.1 Order Placing APIs

Attention: All ordering APIs can only be used during active trading hours. Else they will raise exceptions. Also,
do not use the undocumented parameters in the below APIs. They are meant for internal use.

Note: Blueshift now supports fractional trading, i.e. order quantity need not be an integer and fractional amount is
supported (if supported by the broker). Some brokers (e.g. Crypto brokers) offer exclusively fractional trading. For
such cases, Blueshift will automatically treat every order as fractional. For brokers which do not exclusively offer
fractional trading (e.g. Equity brokers), you must specify a keyword argument fractional=True in the ordering API
functions to make it fractional.

Place Order

The base ordering function on Blueshift is order.

TradingAlgorithm.order(asset, quantity=None, limit_price=0, stop_price=0, bypass_control=False,
style=None, **kwargs)

Place a new order. This is the interface to the underlying broker for ALL order related API functions.

The handling of limit and stop price specification is totally implementation dependent. In case the broker supports
limit orders, limit_price will be effective.

Important:

• Orders can be placed during active trading hours only. This means only handle_data or scheduled callback
functions, or appropriate trade or data callback functions are eligible to place orders.

• Order with zero implied quantity (e.g. order size less than lot-size) will silently fail. No order will be sent
to the broker.

• At present only limit and market orders are supported. Stop loss specification will be ignored.

• For order using rolling assets, see the caveats here.

24 Chapter 5. Placing Orders and Other API Functions

Spring Technical Documentation, Release 2.1.0

• For intraday products, order placement will be refused if the broker follows an intraday cut-off time (usually
15 mins from the end of trading day).

• Always check if the return value is None or a valid order id. For some live brokers, successful orders that
result in an existing position unwind may return a None value. Also a rejected order or an order that failed
validation checks may return a None value (e.g. order with 0 quantity).

Parameters

• asset (asset object.) – asset on which the order to be placed.

• quantity (int) – units to order (> 0 is buy, < 0 is sale).

• limit_price (float) – limit price for limit order

• stop_price (float) – Stop-loss price (currently ignored).

• kwargs – Extra keyword parameters passed on to the broker.

Returns
order ID.

Return type
str or None.

Recognized keyword arguments are validity and product_type. If specified, they must be of type OrderValidity
and ProductType respectively (names are also accepted, instead of enums).

Danger: No ordering function will check the capacity of the account to validate the order (e.g. cash, margin
requirements etc.). You must check before placing any order.

Automatic Order Sizing

Apart from this there is a host of automatic order-sizing functions that allows one to place orders based on order value
or by specifying the fraction of current portfolio value as order value.

TradingAlgorithm.order_value(asset, value, limit_price=0, stop_price=0, bypass_control=False, style=None,
**kwargs)

Place a new order sized to achieve a certain dollar value, given the current price of the asset.

Parameters

• asset (asset object.) – asset on which the order to be placed.

• value (float) – dollar value (> 0 is buy, < 0 is sale).

• limit_price (float) – limit price for limit order

• stop_price (float) – Stop-loss price (currently ignored).

• kwargs – Extra keyword parameters passed on to the broker.

Returns
order ID.

Return type
str or None.

5.2. Trading API functions 25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Spring Technical Documentation, Release 2.1.0

Danger: This will take into account the current price of the asset, not actual execution price. The total value
of execution can exceed the specified target value.

See also:

blueshift.algorithm.algorithm.TradingAlgorithm.order

TradingAlgorithm.order_percent(asset, percent, limit_price=0, stop_price=0, bypass_control=False,
style=None, **kwargs)

Place a new order sized to achieve a certain percentage of the algo net equity, given the current price of the asset.
This method applies a haircut of 2% on the current portfolio value for computing the order value, in case of
market order.

Parameters

• asset (asset object.) – asset on which the order to be placed.

• percent (float) – fraction of portfolio value (> 0 is buy, < 0 is sale).

• limit_price (float) – limit price for limit order

• stop_price (float) – Stop-loss price (currently ignored).

• kwargs – Extra keyword parameters passed on to the broker.

Returns
order ID.

Return type
str or None.

Danger: This will take in to account current price of the asset and current algo net equity, not actual
execution price. The total value of execution can exceed the specified percent.

See also:

blueshift.algorithm.algorithm.TradingAlgorithm.order

Targeting Orders

In addition, Blueshift supports targeting order, which takes in a unit, a order value or a portfolio fraction as a target and
tries to place order to achieve this target. These functions are idempotent and are recommended way to place orders
from an algo.

TradingAlgorithm.order_target(asset, target, limit_price=0, stop_price=0, bypass_control=False,
style=None, **kwargs)

Place a new order sized to achieve a position of a certain quantity of the asset, taking into account the current
positions and outstanding open orders.

Parameters

• asset (asset object.) – asset on which the order to be placed.

• target (int) – units to target (> 0 is buy, < 0 is sale).

• limit_price (float) – limit price for limit order

• stop_price (float) – Stop-loss price (currently ignored).

26 Chapter 5. Placing Orders and Other API Functions

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

• kwargs – Extra keyword parameters passed on to the broker.

Returns
order ID.

Return type
str or None.

Important: If the current position in the asset is X, and a target order is placed for Y units, and there is no
outstanding open order for the asset, this will place an order for Y-X units. If X>Y, this means a sell order, if X
< Y, a buy order. If X is exactly equal to Y, no actions are taken. If there are outstanding open orders, that is
added to X before calculating the difference. In case of a significant delay in order update from the broker, this
can compute wrong incremental units.

See also:

blueshift.algorithm.algorithm.TradingAlgorithm.order

TradingAlgorithm.order_target_percent(asset, percent, limit_price=0, stop_price=0, bypass_control=False,
style=None, **kwargs)

Place a new order sized to achieve a position of a certain percent of the net account value. This method applies
a haircut of 2% on the current portfolio value for computing the order value, in case of market order.

Parameters

• asset (asset object.) – asset on which the order to be placed.

• percent (float) – fraction of portfolio value to target (> 0 is buy, < 0 is sale).

• limit_price (float) – limit price for limit order

• stop_price (float) – Stop-loss price (currently ignored).

• kwargs – Extra keyword parameters passed on to the broker.

Returns
order ID.

Return type
str or None.

See also:

blueshift.algorithm.algorithm.TradingAlgorithm.order_percent

TradingAlgorithm.order_target_value(asset, target, limit_price=0, stop_price=0, bypass_control=False,
style=None, **kwargs)

Place a new order sized to achieve a position of a certain value of the asset, taking into account the current
positions and outstanding open orders.

Parameters

• asset (asset object.) – asset on which the order to be placed.

• target (float) – value to target (> 0 is buy, < 0 is sale).

• limit_price (float) – limit price for limit order

• stop_price (float) – Stop-loss price (currently ignored).

• kwargs – Extra keyword parameters passed on to the broker.

5.2. Trading API functions 27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

Returns
order ID.

Return type
str or None.

Important: This order method computes the required unit from the target and the current market price, and
does not guarantee the execution price or the value after execution.

See also:

blueshift.algorithm.algorithm.TradingAlgorithm.order_value

Danger: It is highly recommended to use targeting order functions above than the basic ordering function. Basic
order function, if not used correctly, may lead to sending inadvertent orders or too many orders.

Advanced Algo Orders

See Execution Algorithms.

5.2.2 Order management APIs

Attention: All order management APIs can only be used during active trading hours. Else they will raise excep-
tions. Also, do not use the undocumented parameters in the below APIs. They are meant for internal use only.

Update Order

TradingAlgorithm.update_order(order_param, *args, **kwargs)
Function to update an existing open order. The parameter order_param can be either an Order object or an order
ID. Use limit_price keyword for updating the price of a limit order. Other keyword support is implementation
dependent.

Important: This API will try to modify an existing order, but will fail if the order is already executed.

Parameters
order_param – An order object, or a valid order ID to modify.

28 Chapter 5. Placing Orders and Other API Functions

https://docs.python.org/3/library/stdtypes.html#str

Spring Technical Documentation, Release 2.1.0

Cancel Order

TradingAlgorithm.cancel_order(order_param)

Function to cancel an open order not filled yet (or partially filled).

Parameters
order_param – An order object, or a valid order ID to cancel.

Danger: This function only initiates a cancel request. It does not and cannot ensure actual cancellation.

Fetch Open Orders

TradingAlgorithm.get_open_orders(algo=True)
Get a dictionary of all open orders, keyed by their id. The return value is a dict object with order IDs (str) as keys
and order objects as values.

Returns
A dictionary of open orders.

Return type
dict

Fetch Open Positions

TradingAlgorithm.get_open_positions(algo=True)
Get all open positions. The return value is a dict, keyed by assets and positions as values.

Returns
A dictionary of open orders.

Return type
dict

Get Order by Order ID

TradingAlgorithm.get_order(order_id, algo=True)
Function to retrieve an order by order id.

Parameters
order_id (str) – A valid order id to retrieve.

Returns
The matching order object.

Important: Up to what history orders can be retrieved depends on broker implementation. Usually for most
cases, only the closed orders placed in the current session (day), plus all open orders are available.

5.2. Trading API functions 29

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Spring Technical Documentation, Release 2.1.0

Check If Tradable

TradingAlgorithm.can_trade(assets)
Function to check if asset can be traded at current dt.

Parameters
assets (list) – List of assets to check

Returns
True if all assets in the list can be traded, else False.

Return type
bool

Square Off Position

TradingAlgorithm.square_off(assets=None, algo=True)
Function to square off open positions and cancel open orders. Typically useful for end-of-day closure for intraday
strategies or for risk management.

If the underlying broker natively support squaring off open positions, this method will use that interface. In such
cases, squaring off will only happen if there is an open position with the broker, not just with this algo. An
example of such a case is two algos placing opposite orders - resulting in opposite positions in each algo, but no
open positions with the broker. In such a case the square-off will do nothing. This behaviour is intentional to
avoid creating unintended positions during square-off. Also, in such case, no cool-off period is enforced.

If the underlying broker does not support square-off natively, then the algo positions will be considered. In such
case, a square-off may actually create a new position with the underlying broker. This will also result in a cool-off
period during which a new entry into the same asset(s) will not be allowed. Additionally, during cool-off period,
additional call to this method will not result in positions unwinding, but will cancel open orders. This behaviour
is intentional to avoid creating unintended positions with repeated sqauare-off attempts.

If assets is None, all existing open orders will be cancelled, and then all existing positions will be squared off.
If assets is a list or a single asset, only those positions and orders will be affected.

Important: This API will bypass any trading controls to make sure square-off orders are not blocked by such
controls. Also, see above the behaviour differences between the cases where the underlying broker does or does
not support a native square-off method.

Parameters

• assets (list) – A list of assets, or a single asset or None

• algo (bool) – If we should consider algo or broker positions

Danger: This function only initiates square off. It does not and cannot ensure actual square-off. Also, in case
we attempt to squareoff during a cool-off period, it will be ignored (to prevent multiple squareoff attempts
which may lead to unintended positions), but will attempt to cancel any open orders.

See also:

blueshift.algorithm.algorithm.TradingAlgorithm.set_cooloff_period

30 Chapter 5. Placing Orders and Other API Functions

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Spring Technical Documentation, Release 2.1.0

5.2.3 Stoploss and Take-profit

Add or Remove Stoploss

TradingAlgorithm.set_stoploss(asset, method, target, trailing=False, on_stoploss=<function noop>)
Set the stoploss for a position, defined by an asset. Method can be one of PRICE, MOVE, PERCENT. PRICE
set the target as the stop level. MOVE will add the target to the entry price to compute stop level, whereas
PERCENT will compute the percent move from the entry price. If trailing is True, stoploss is updated at each
lookup frequency (i.e. every minute).

Parameters

• asset (asset object.) – The asset for the stoploss check.

• method (str) – The method for the stoploss check.

• target (float) – The stoploss target.

• trailing (bool) – If it is a trailing stoploss.

Important: If you are placing the entry order with a stoploss specified, do not use this function. The stoploss
in the order, if supported by the broker, will automatically enable stoploss exit. This function will try to square
off the position if the stoploss is hit by placing a market order. Also, after an exit, this will cause a cool-off
period for that asset which will prevent further entry trade till it resets. Cool off period can be set using the
set_cooloff_period api function. Also a stoploss, once set, will be valid till it is cancelled using remove_stoploss
api method.

See also:

blueshift.algorithm.algorithm.TradingAlgorithm.set_cooloff_period

TradingAlgorithm.remove_stoploss(asset)
Remove stoploss for an asset.

Parameters
asset (asset object.) – The asset for the stoploss check.

Add or Remove Take-profit Target

TradingAlgorithm.set_takeprofit(asset, method, target, on_takeprofit=<function noop>)
Set the take-profit for a position, defined by an asset. Method can be one of PRICE, MOVE, PERCENT. PRICE
set the target as the level. MOVE will add the target to the entry price to compute level, whereas PERCENT will
compute the percent move from the entry price.

Parameters

• asset (asset object.) – The asset for the stoploss check.

• method (str) – The method for the stoploss check.

• target (float) – The stoploss target.

Important: If you are placing the entry order with a takeprofit specified, do not use this function. The takeprofit
in the order, if supported by the broker, will automatically enable takeprofit exit. Also a takeprofit, once set, will
be valid till it is cancelled using remove_takeprofit api method.

5.2. Trading API functions 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

TradingAlgorithm.remove_takeprofit(asset)
Remove takeproft for an asset.

Parameters
asset (asset object.) – The asset for the stoploss check.

Important: Always place stoploss or take-profit orders using assets from the strategy positions, and not using the
assets used to place the orders. This is because for special cases (rolling assets or margin products etc.) the order asset
can be different than the asset in the resulting position.

5.3 Risk Management APIs

Attention: These set of API functions (apart from terminate) can only be called within initialize function.

A set of API functions to control trade risk and implements various limits.

TradingAlgorithm.set_allowed_list(assets, on_fail=None)
Defines a whitelist of assets to be ordered. Any order outside these assets will be refused (with a warning).
Usually, the user script will use either this function or the blacklist function set_do_not_order_list, but not
both.

Parameters
assets (list) – A list of assets.

See also:

blueshift.algorithm.algorithm.TradingAlgorithm.set_do_not_order_list

TradingAlgorithm.set_do_not_order_list(assets, on_fail=None)
Defines a list of assets not to be ordered. Any order on these assets will be refused (with a warning).

Parameters
assets (list) – A list of assets.

See also:

blueshift.algorithm.algorithm.TradingAlgorithm.set_allowed_list

TradingAlgorithm.set_long_only(on_fail=None)
Set a flag for long only algorithm. Any short-selling order (attempt to sell without owning the assets) will be
refused (and a warning raised).

TradingAlgorithm.set_max_daily_size(assets=None, max_quantity=None, max_notional=None,
on_fail=None)

Set a limit on the order size - in terms of total daily limits. If assets is None, it is applied for all assets, else
only for assets in the list.

Parameters

• assets (list) – A list of assets for position control.

• max_quantity (int) – Maximum order quantity allowed.

• max_notional (float) – Maximum order value allowed.

32 Chapter 5. Placing Orders and Other API Functions

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

Warning: Specifying both max_quantity and max_notional will raise exception.

TradingAlgorithm.set_max_exposure(max_exposure, on_fail=None)
Set a limit on the account gross exposure. Any order that can potentially exceed this limit will be refused (with
a warning).

Parameters
max_exposure (float) – Maximum allowed exposure.

TradingAlgorithm.set_max_leverage(max_leverage, on_fail=None)
Set a limit on the account gross leverage . Any order that can potentially exceed this limit will be refused (with
a warning).

Parameters
max_leverage (float) – Maximum allowed leverage.

TradingAlgorithm.set_max_order_count(max_count, on_fail=None)
Set a limit on the maximum number of orders generated in a day. Any order that can exceed this limit will be
refused (and will raise a warning).

Parameters
max_count (int) – Maximum number of orders allowed per session (day).

TradingAlgorithm.set_max_order_size(assets=None, max_quantity=None, max_notional=None,
on_fail=None)

Set a limit on the order size - either in terms of quantity, or value. Any order exceeding this limit will not be
processed and a warning will be raised.

Parameters

• assets (list) – List of assets for this control. If assets is a dict, it should be in asset:value
format, and will only apply to the assets mentioned. If assets is a list, the same value wil
apply to all assets. If assets is None, the control value will apply to ALL assets.

• max_quantity (int) – Maximum quantity allowed (unsigned).

• max_notoinal (float) – Maximum value at current price.

TradingAlgorithm.set_max_position_size(assets=None, max_quantity=None, max_notional=None,
on_fail=None)

Set a limit on the position size (as opposed to order size). Any order that can exceed this position (at current
prices) will be refused (and will raise a warning). If assets is None, it is applied for all assets, else only for
assets in the list.

Parameters

• assets (list) – A list of assets for position control.

• max_quantity (int) – Maximum position quantity allowed.

• max_notional (float) – Maximum position exposure allowed.

Warning: Specifying both max_quantity and max_notional will raise exception.

TradingAlgorithm.terminate(error_message=None, cancel_orders=True)
Exit from the current run by scheduling the algo end event. This will cause the algorithm to exit execution as
soon as possible. This will also trigger the analyze API function as it exits.

5.3. Risk Management APIs 33

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

Parameters
cancel_orders (bool) – If open orders should be cancelled.

Danger: This function only initiates outstanding orders cancellation, and does NOT guarantee it.

5.4 Pipeline APIs

Pipelines are a set of APIs to systematically select universe by computing filter and factors.

TradingAlgorithm.attach_pipeline(pipeline, name, chunks=None, eager=True)
Register a pipeline for this algorithm. Pipeline with the same name will be overwritten.

Args:
pipeline (obj): A pipeline object to register.

name (str): Name of the pipeline.

chunks (iterable): Iterator to specify the computation chunks.

eager (bool): Compute ahead the pipeline.

Returns:
Returns the pipeline object registered.

TradingAlgorithm.pipeline_output(name)
return pipeline output for the given name.

5.4.1 Pipeline in live trading

Blueshift 2.0 introduces pipeline API support in live trading. In live trading, all data query is sourced from the broker
feed. However, the pipeline data query is directed to Blueshift database (daily frequency). The pipeline is, as usual,
evaluated on daily prices till one day before the evaluation date.

Danger: Pipeline APIs are evaluated on the last close. If the latest data from our data vendors are not updated for
some reason on a particular date, the pipeline evaluation will fail. In such case, we raise an exception and the live
strategy will terminate with Error.

5.5 Backtest Model Selection APIs

The following API functions allow one to customise various aspects of the backtest simulation. These functions, of
course, do not apply to live trading and are ignored in live mode.

TradingAlgorithm.set_slippage(model=None, *args, **kwargs)
Set the slippage model. For more details on available slippage models, see Slippage Models.

Warning: This method can only be called once in the initialize function. Calling it anywhere else will crash
the algo. This method is ignored in live trading.

34 Chapter 5. Placing Orders and Other API Functions

https://docs.python.org/3/library/functions.html#bool

Spring Technical Documentation, Release 2.1.0

Parameters
model (slippage model.) – A valid slippage model object.

TradingAlgorithm.set_commission(model=None, charge_model=None, *args, **kwargs)
Set the commission (cost) model. For more details see the Commissions and Cost Models descriptions. A
commission model captures trading costs that are charged by the broker or the trading venue. An optional
charge_model can also be specified to capture trading charges captured by authorities (e.g. taxes and levies).

Warning: This method can only be called once in the initialize function. Calling it anywhere else will crash
the algo. This method is ignored in live trading.

Parameters
model (commission model.) – A valid commission model object.

TradingAlgorithm.set_margin(model)
Set the margin model. For more details on available margin models, see Margin Models.

Warning: This method can only be called once in the initialize function. Calling it anywhere else will crash
the algo. This method is ignored in live trading.

Parameters
model (margin model.) – A valid margin model object.

5.6 Miscellaneous API functions

TradingAlgorithm.get_datetime()

Get the current date-time of the algorithm context. For live trading, this returns the current real-time. For a
backtest, this will return the simulation time at the time of the call.

Returns
current date-time (Timestamp) in the algo loop.

Return type
pandas.Timestamp

TradingAlgorithm.record(*args, **kwargs)
Record a list of var-name, value pairs for each day.

Parameters
kwargs – the names and values to record. Must be in pairs.

Note: The recorded values are tracked within the context, as record_vars variable. Also, any variable record
is kept as only one point per day (session). If the user script records values at multiple points in a day, only the
last value will be retained. Use of this function can slow down a backtest.

See blueshift.algorithm.context.AlgoContext.record_vars.

TradingAlgorithm.set_benchmark(asset)
Overwrite the default benchmark asset for algo performance analysis.

5.6. Miscellaneous API functions 35

Spring Technical Documentation, Release 2.1.0

Param
asset object.

Warning: This method can only be called once in the initialize function. Calling it anywhere else will crash
the algo.

TradingAlgorithm.set_account_currency(currency)
Set the currency of the account. Only valid for backtests.

Parameters
currency (str or CCY) – A supported currency code or enumeration.

Note: for non-fx brokers, this will be ignored. All non-fx brokers assume the algo performance is maintained
in the LOCAL currency.

TradingAlgorithm.set_cooloff_period(period=30)
Set the cool-off period following a call to the square_off function, or following an exit resulting from a take profit
or stop loss.

Parameters
period (int) – The period (in minutes) to cool off.

TradingAlgorithm.set_algo_parameters(param_name='params')
Declare a context attribute as algo parameters.

Parameters
param_name (str) – An attribute of the context variable.

Note: If the attribute does not exist, a new attribute is created and set to the value passed as the –parameters
flag as a dictionary of key-value pairs. If it exists, it must be a dictionary, and parameter key-value pairs from the
–parameters flag are added to the attribute (overwritten if exists).

36 Chapter 5. Placing Orders and Other API Functions

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER

SIX

OBJECTS, MODELS AND CONSTANTS

6.1 Trading Calendar

class blueshift.protocol.TradingCalendar

A trading calendar maintains the trading sessions for a given trading venue (e.g. an exchange like NYSE). It has
an associated timezone. It tracks sessions opening/ closing times and holidays. Strategy can access it via the
context variable as AlgoContext.trading_calendar.

See also:

See documentation on the Context Object.

bump_forward(dt)
bump to the next date if dt is a holiday.

bump_mod_forward(dt)
bump to next date, unless the result is in the next month, in which case, bump to the previous date.

bump_mod_previous(dt)
bump to previous, unless the result is in the previous month, in which case, bump to the next date.

bump_previous(dt)
bump to the previous date if dt is a holiday.

property close_time

session closing time in datetime.time format.

current_session(dt)
returns the current session. Returns next if not a trading session.

is_holiday(dt)
check (bool) if it is a holiday, given a timestamp.

is_open(dt)
check (bool) for if a trading session is in progress, given a timestamp.

is_session(dt)
check (bool) if it is a trading day, given a timestamp.

last_n_sessions(dt, n, convert=True)
Returns last n trading sessions, including dt.

last_trading_minute(dt)
returns the last trading minute.

37

Spring Technical Documentation, Release 2.1.0

property minutes_per_day

total number of minutes (int) in a trading session.

property name

name (str) of the trading calendar.

next_close(dt)
returns next close session time (pandas.Timestamp), given a timestamp.

next_n_sessions(dt, n, convert=True)
Returns next n trading sessions, including dt.

next_open(dt)
returns next open session time (pandas.Timestamp), given a timestamp.

next_session(dt)
returns the next session.

property open_time

session opening time in datetime.time format.

previous_close(dt)
returns previous close session time (pandas.Timestamp).

previous_open(dt)
returns previous open session time (pandas.Timestamp) , given a timestamp.

previous_session(dt)
returns the previous session.

sessions(start_dt, end_dt, convert=True)
list all valid sessions between dates, inclusive (pandas.DatetimeIndex).

to_close(dt)
returns the close time of the curret session(pandas.Timestamp) , given a timestamp. Returns the next
session open if the market is closed.

to_open(dt)
returns current open session time (pandas.Timestamp) , given a timestamp. Returns the next session open
if the market is closed.

property tz

time-zone (str) of the trading calendar.

Note: Calendar objects can be imported into the strategy code from blueshift.protocol module. But there is
no reasonable case that a user strategy may need to import this class or instantiate an instance. Use AlgoContext.
trading_calendar to get a reference to the trading calendar of the running algo.

38 Chapter 6. Objects, Models and Constants

Spring Technical Documentation, Release 2.1.0

6.2 Assets

Assets are objects in Blueshift that encapsulates information about tradable instruments (e.g. equities) or non-tradable
market data (e.g. a market index). User strategy code uses the symbol function to convert a symbol name to the
corresponding asset objects. This asset object then can be passed on to market data query, order placing functions etc.

6.2.1 Asset Symbology

The symbology followed on the platform is pretty straightforward. Exchange traded equities are referred to by their
respective exchange symbols. Forex assets are referred to as CCY1/CCY2 (with the conventional meaning).

In all cases, you can optionally add the exchange reference as EXCHANGE:SYMBOL. Note, adding exchange is NOT
required at present, as Blueshift does not support multiple exchanges for the same security currently. Also, specifying
a wrong exchange name can raise the SymbolNotFound exception.

Note: Special characters in symbol names (e.g. ‘-‘ or ‘&’) are replaced by an underscore (‘_’) in Blueshift. This
means a symbol like ‘M&M’ should be entered in the symbol function like ‘M_M’.

Dated and Rolling Futures and Options

For futures, the symbol is SYM<YYYYMMDD> for dated instruments - where SYM refers to the underlying symbol and the
date part is the expiry date. For option the format is SYM<YYYYMMDD>TYPE<STRIKE>, where TYPE is the option type
and can be either CE or PE. The STRIKE is the strike price of the option (with no leading or trailing zeros).

Referring to rolling (continuous) futures and options are simple. Instead of the expiry date, specify the expiry series.
For NSE monthly futures and options, specify -I for the near month and -II for the far month. For weekly options,
specify -W{n} instead, where n is the week offset (starting from 0 for the current week). For specifying relative strike,
use + or - and specify the strike difference from the ATM (usually the near month futures). Below shows some examples.

from blueshift.api import symbol

def initialize(context):
asset0= symbol('ACC') # ACC equity on NSE
asset1= symbol('NSE:ACC') # Specify the exchange (not needed)
asset2= symbol('ACC20210826') # ACC Aug 2021 futures on NSE
asset3= symbol('NIFTY20210826CE16000') # Nifty Aug 21 call at 16K strike
asset4= symbol('NIFTY-I') # NSE Nifty first month futures
asset5= symbol('NIFTY-ICE+100') # Nifty ATM+100 call near-month
asset6= symbol('NIFTY-W0PE-0') # Nifty current-week ATMF put

You can use the rolling symbology for both data query and placing orders. See the caveat below on how rolling
symbology differs for futures and options in backtesting and live trading.

Warning: Be careful when using rolling assets on Blueshift for placing orders. Futures and options rolling assets
behave differently in backtesting. Positions from orders with rolling futures are tracked as the rolling futures itself,
and the position is automatically rolled on expiry date. Orders for rolling options creates positions in the specific
expiry and strike prevailing at the time of the order. Such positions will not be rolled automatically. In live trading,
both are treated as specific instruments without any automatic roll.

6.2. Assets 39

Spring Technical Documentation, Release 2.1.0

6.2.2 Asset Related Constants

Below are constants related to asset definitions.

AssetClass

Asset class of the asset object.

class blueshift.assets.AssetClass(value)
An enumeration.

EQUITY = 0

FOREX = 1

InstrumentType

Instrument type of the asset object. SPOT assets are traded with full price paid during buying and selling. MARGIN
assets are traded on the margin. FUTURES as futures derivatives on another underlying asset. OPT are options on
another underlying asset.

class blueshift.assets.InstrumentType(value)
An enumeration.

SPOT = 0

FUTURES = 1

OPT = 2

MARGIN = 3

OptionType

Options assets can be either CALL or PUT. All options are at present assumed to be of the European type.

class blueshift.assets.OptionType(value)
An enumeration.

CALL = 0

PUT = 1

StrikeType

Asset symbology supports specifying options strikes as either absolute (ABS) or relative (to the future-implied ATM
strike, REL).

class blueshift.assets.StrikeType(value)
An enumeration.

ABS = 0

REL = 1

40 Chapter 6. Objects, Models and Constants

Spring Technical Documentation, Release 2.1.0

6.2.3 Types of Asset

Different assets are modelled as objects of different classes. The base class is MarketData. All asset classes are derived
from it. Below provides a list of supported assets.

Market Data

class blueshift.assets.MarketData

MarketData class encapsulates an object with which some data (pricing or otherwise) may be associated. All
tradable assets are derived from this class. This can also represent other generic data series like macro-economic
data or corporate fundamental data.

A MarketData object has the following attributes. All attributes are read-only from a strategy code.

Attribute Type Description
sid int Unique Identifier
symbol str Symbol string
name str Long name
start_date pandas.Timestamp Start date of data
end_date pandas.Timestamp End date of data
ccy Currency Asset currency
exchange_name str Name of the exchange
calendar_name str Name of the calendar

Asset

class blueshift.assets.Asset

Asset models a tradeable asset and derives from MarketData.

An Asset object has the following attributes in addition to the attributes of the parent class. All attributes are
read-only from a strategy code.

Attribute Type Description
asset_class AssetClass Asset class
instrument_type InstrumentType Instrument type
mult float Asset multiplier (lot size)
tick_size int Tick size (reciprocal)
auto_close_date pandas.Timestamp Auto-close day
can_trade bool If tradeable
fractional bool Fractional trading supported

Warning: The mult attribute defaults to 1. Any order placed for an asset should include this in the order
size. Order placement routine will check if the order size is a multiple of mult. For e.g. an asset with a lot
size of 75 should use order size of 150 (order(asset, 150)) to place an order for 2 lots.

Note: The attribute tick_size is stored as reciprocal of the actual tick size. For a tick size of 0.05, the value
stored will be 20. It defaults to 100 (corresponding to a tick size of 0.01).

6.2. Assets 41

Spring Technical Documentation, Release 2.1.0

The auto_close_date is the date on which the asset is automatically squared-off (if still held by the algo). This
defaults to the end_date.

Forex

class blueshift.assets.Forex

Forex models for margin traded forex. This is derived from the Asset class. This has the following attributes in
addition to the attributes of the parent class. All attributes are read-only from a strategy code.

Attribute Type Description
ccy_pair str currency pair (XXX/YYY)
base_ccy str Base currency (XXX)
quote_ccy str Quote currency (YYY)
buy_roll float Roll cost for a long position
sell_roll float Roll cost for a short position
initial_margin float Initial margin
maintenance_margin float Maintenance margin

Note: The asset_class is set to FOREX and the instrument_type is MARGIN.

The roll costs are for 1 unit - the overnight roll is calculated as roll cost multiplied by the quantity in open position.

Equity

Fully funded cash equity asset.

class blueshift.assets.Equity

Equity models exchange traded equities asset. This is derived from the Asset class. This has the following
attributes in addition to the attributes of the parent class. All attributes are read-only from a strategy code.

Attribute Type Description
shortable bool If shortable
borrow_cost float Borrow cost if shortable

Note: The asset_class is set to EQUITY and the instrument_type is SPOT for equities and FUNDS for
ETFs.

42 Chapter 6. Objects, Models and Constants

Spring Technical Documentation, Release 2.1.0

EquityMargin

Equity product traded on the margin.

class blueshift.assets.EquityMargin

Margin traded equity product.

EquityIntraday

Equity products traded on the margin which cannot be carried overnight. Usually fresh orders are restricted after a
cut-off time towards the closing hours of the market.

class blueshift.assets.EquityIntraday

Intraday margin traded equity product.

EquityFutures

class blueshift.assets.EquityFutures

Equity futures models exchange traded equities futures. This is derived from the Asset class. This has the
following attributes in addition to the attributes of the parent class. All attributes are read-only from a strategy
code.

Attribute Type Description
underlying str Symbol of underlying asset
root str Root part of the symbol
roll_day int Roll period if rolling asset
expiry_date pandas.Timestamp Date of expiry
initial_margin float Initial margin
maintenance_margin float Maintenance margin

Note: The asset_class is set to EQUITY and the instrument_type is FUTURES. The roll_day parameter
determines if the asset is a rolling asset (i.e. should be rolled automatically in backtest if value is greater than
-1). The roll_day is the offset from the expiry_date to determine the roll date.

EquityOption

class blueshift.assets.EquityOption

Exchange traded equity options. This is derived from the EquityFutures class. This has the following attributes
in addition to the attributes of the parent class. All attributes are read-only from a strategy code.

Attribute Type Description
strike float Option strike
strike_type StrikeType Option strike type
option_type OptionType Type of option

Note: The asset_class is set to EQUITY and the instrument_type is OPT. The parameter strike_type
determines the offset from the ATM strike, and can be either absolute, relative from ATM (e.g. +100 or -100) or

6.2. Assets 43

Spring Technical Documentation, Release 2.1.0

in terms of delta (multiplied by 100, e.g. 25D or -10D).

Note: All these objects can be imported into the strategy code from blueshift.assets.

6.2.4 Data and Simulation Models for Assets

On the platform, the data availability and default simulation behaviours depend on the asset class. By default, equities
are considered fully funded instruments. That is, buying requires the full cost to be paid in cash (and shorting generates
the opposite cash flow). The default simulation model is the blueshift.finance.slippage.VolumeSlippage. For
modelling equity trading on the margin, use EquityMargin, which uses the same slippage model, but tracks the required
margins and related cash flows through the blueshift.finance.margin.FlatMargin by default. EquityFutures
uses the same default slippage and margin models.

EquityOptions slippage are computed differently. The slippage, in this case, is based on the options vega instead of
volumes. The maximum transaction limit per bar is 100 lots, and the impact is calculated as a 0.5% bump on the vega
(i.e. vega*implied_vol*0.005). Also, since the volatilty smile is computed from puts for below ATM and from calls
for above ATM strikes, strategies exploring put and call implied volatity discrepancies at the same strike (for example,
put call parity)) cannot be modelled.

The forex related assets are modelled using the blueshift.finance.slippage.BidAskSlippage by default.

6.3 Orders

6.3.1 ProductType

ProductType determines the handling of the position. DELIVERY is the usual type, where an asset is purchased by
paying the full price and is held till it is sold (or auto-closed by the algo). MARGIN is when the asset is purchased on the
margin (paying a fraction of the cost). INTRADAY is specific to certain geographies (e.g. NSE), it is same as margin,
but the asset is automatically squared-off the same day (if not already done so), by the broker, after a cut-off time.

class blueshift.protocol.ProductType(value)
An enumeration.

INTRADAY = 0

DELIVERY = 1

MARGIN = 2

6.3.2 OrderType

Order types determines how the orders are to be executed. A MARKET order is executed at the best available price. A
LIMIT order is put in the order book and is executed at the limit price or better. A STOPLOSS_MARKET order is an order
that gets activated after a certain trigger (stoploss price) and becomes a market order after that. A STOPLOSS (or a
stop-limit) order gets activated after a trigger is breached (stoploss price), and then becomes a limit order. A limit price
is required for a limit order. A stoploss price is required for a stoploss market order. Specifying both is required for a
stop-limit order.

class blueshift.protocol.OrderType(value)
An enumeration.

44 Chapter 6. Objects, Models and Constants

Spring Technical Documentation, Release 2.1.0

MARKET = 0

LIMIT = 1

STOPLOSS = 2

STOPLOSS_MARKET = 3

6.3.3 OrderValidity

Validity of an order. DAY means valid for the entire trading day (till cancelled by the algo). IOC or immediate-or-cancel
ensures the order is filled fully or as much as possible as soon as it arrives, and the remaining part is cancelled if it
cannot be filled immediately. FOK or fill or kill orders are filled either fully or cancelled (i.e. avoids partial fill). AON
or all-or-none is similar to fill-or-kill, but they are not cancelled and remain in the order book - but can be filled either
fully or none at all. GTC is valid till the order is explicitly cancelled. OPG (market-on-open) and CLS (market-on-close)
are not implemented, but can be supported by a live broker.

class blueshift.protocol.OrderValidity(value)
An enumeration.

DAY = 0

IOC = 1

FOK = 2

AON = 3

GTC = 4

OPG = 5

CLS = 6

Note: the default validity is DAY.

6.3.4 OrderSide

A BUY order or a SELL order.

class blueshift.protocol.OrderSide(value)
An enumeration.

BUY = 0

SELL = 1

6.3. Orders 45

Spring Technical Documentation, Release 2.1.0

6.3.5 OrderStatus

Status of an order. COMPLETE means fully executed. OPEN means partially (including 0) executed and still active.
REJECTED means the order is no longer active, and is rejected by the broker. CANCELLED means the order is no longer
active and is cancelled by the algo. A rejected or cancelled order can be partially filled.

class blueshift.protocol.OrderStatus(value)
An enumeration.

COMPLETE = 0

OPEN = 1

REJECTED = 2

CANCELLED = 3

6.3.6 Order

class blueshift.protocol.Order

Order object encapsulates all details about orders sent by the algo to the broker. It also tracks the order fill. Orders
are automatically tracked by internal trackers. Strategy code can query its attributes to check various details and
fill status.

An order object has the following attributes. All attributes are read-only from a strategy code.

Attribute Type Description
oid str Order ID
asset Asset Asset of the position
quantity float Net quantity at present
product_type ProductType Product type
order_type OrderType Order type
order_validity OrderValidity Order validity
disclosed float Total amount disclosed
price float Limit price
trigger_price float Stoploss trigger price
stoploss_price float Limit for stop-limit order
filled float Amount filled so far
pending float Pending (quantity-filled)
average_price float Average price of fill
side OrderSide Order side (buy/sell)
status OrderStatus Order status
timestamp pandas.Timestamp Timestamp of last update
fractional bool If a fractional order
price_at_entry float Mid price at entry time
create_latency float Latency (milli) to create
exec_latency float Latency (milli) to place

Note: The oid is the field through which the platform tracks an order (which can be different from the broker
or the exchange IDs).

46 Chapter 6. Objects, Models and Constants

Spring Technical Documentation, Release 2.1.0

is_open()

Is the order still open.

is_buy()

Is the order a buy order.

6.4 Positions

6.4.1 PositionSide

PositionSide captures the original side of the position - LONG if a long position, SHORT otherwise.

class blueshift.protocol.PositionSide(value)
An enumeration.

LONG = 0

SHORT = 1

6.4.2 Position

class blueshift.protocol.Position

A position reflect the current economic interest in an asset, including associated profit and losses accumulated
over the lifetime of such position. Positions are maintained by the algo blotter (though a dedicated tracker) and
are updated on each trade or as and when prices change.

A position object has the following attributes. All attributes are read-only from a strategy code.

Attribute Type Description
asset Asset Asset of the position
quantity float Net quantity at present
buy_quantity float Total buying quantity
buy_price float Average buy price
sell_quantity float Total sell quantity
sell_price float Average selling price
pnl float Total profit or loss
realized_pnl float Realised part of pnl
unrealized_pnl float Unrealized (MTM) part of pnl
last_price float Last updated price
last_fx float Last known FX conversion rate
underlying_price float Underlying price
timestamp pandas.Timestamp Timestamp of last update
value float Holding value of this position
cost_basis float Entry cost of this position
margin float Margin posted (if available)
product_type ProductType Product type
position_side PositionSide Position side (Long/Short)
fractional bool If a fractional order

See also:

See Asset for details on asset object. See Orders for details on order objects.

6.4. Positions 47

Spring Technical Documentation, Release 2.1.0

if_closed()

If this position is closed out.

6.5 Simulation Models

6.5.1 Slippage Models

class blueshift.finance.slippage.SlippageModel

Slippage model implements the backtest simulation. The core method simulate takes in an order and simulates
the fill and the fill price.

simulate()

Takes in an order (may be already partially filled), and returns a trade with executed price and amount, as
well as the fair mid. The difference between the execution price and the fair mid is the slippage.

Parameters

• order (order object.) – Order object to process.

• dt (pandas.Timestamp) – Timestamp for the order.

Returns
A tuple of volume, price, fair mid and max volume.

Return type
(float, float, float, float)

class blueshift.finance.slippage.NoSlippage

Trade simulation based on OHLCV data without any slippage. The max volume executed at each trading bar is
capped at max_volume fraction (defaults to 0.02, i.e. 2% of available volume at each bar) of the available volume
at the bar. Setting max_volume to 0 will disable any cap and the full pending amount will be assumed to trade
successfully in a single trade. The impact cost is always zero, i.e. the order is executed at the available ‘close’
price on that bar.

Parameters
max_volume (float) – maximum volume that can be executed at a bar.

class blueshift.finance.slippage.BidAskSlippage

Trade simulation based on OHLCV data with bid-ask spread. The max volume executed is capped at
max_volume fraction of the available volume at the bar. The impact cost equals to half the bid-ask spread. Set-
ting`max_volume` to 0 will disable any cap and the full pending amount will be assumed to trade successfully
in a single trade.

Parameters
max_volume (float) – maximum volume that can be executed at a bar.

Warning: This is supported only for cases where the dataset includes the ‘bid’ and ‘ask’ data. At present,
only the Forex data set is suitable for this slippage model.

class blueshift.finance.slippage.VolumeSlippage

Trade simulation based on OHLCV data with volume based slippage. In this model, the max volume that can be
executed is capped at a fixed percent of the volume at the bar. The price impact is modelled based on the below.

∆𝑃 = 𝑠/2 + 𝛼.𝜎.(
𝑄

𝑉
)𝛽

48 Chapter 6. Objects, Models and Constants

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

where:
∆𝑃 = impact, 𝑠 = spread, 𝛼 = cost coefficient, 𝜎 = historical volatility, 𝑄 = traded volume, 𝑉 = available
volume, 𝛽 = cost exponent

Parameters

• max_volume (float) – maximum participation (defaults to 0.02).

• cost_coeff (float) – cost coefficient (defaults to 0.002).

• cost_exponent (float) – cost exponent (defaults to 0.5).

• spread (float) – constant spread (defaults to 0).

• spread_is_percentage (bool) – If false, spread is treated as absolute (defaults False).

• use_vol (bool) – If false, vol is set to 1.0 (defaults to False).

• vol_floor (float) – Floor value of vol (defaults to 0.05), ignored if use_vol is False.

See also:

For more on the model, see .

class blueshift.finance.slippage.FixedSlippage

Trade simulation based on OHLCV data with a fixed slippage. The max volume executed is capped at
max_volume fraction of the available volume at the bar. Slippage is half the spread.

Parameters

• spread (float) – bid-ask spread (constant).

• max_volume (float) – maximum volume that can be executed at a bar.

class blueshift.finance.slippage.FixedBasisPointsSlippage

Trade simulation based on OHLCV data with a fixed slippage expressed in basis points (100th of a percentage
point). The max volume executed is capped at max_volume fraction of the available volume at the bar. Slippage
is half the spread. The actual spread applied is arrived at as 𝑠𝑝𝑟𝑒𝑎𝑑*𝑐𝑙𝑜𝑠𝑒/10000, where 𝑐𝑙𝑜𝑠𝑒 is the close price
at that bar.

Parameters

• spread (float) – bid-ask spread (constant in basis points).

• max_volume (float) – maximum volume that can be executed at a bar.

6.5.2 Margin Models

class blueshift.finance.margin.MarginModel

Margin model calculates margins required (or released) for an order execution. For a fully funded trade, (e.g.
cash equities) the margin is 0. For margin trading or derivatives (futures and options), each trade adds to or
releases a certain margin. Margins are charged from the available cash in the portfolio. On release, it is added
back to portfolio cash. Each order, before execution, is checked for sufficient funds in the account. If sufficient
funds are not available, the order is rejected.

All margin models derive from this class and concretely implement two methods, calculate and exposure_margin.
The method calculate is used to determine margin requirements for a transaction. The method exposure_margin
is used to calculate daily MTM settlements at the end-of-day calculation.

6.5. Simulation Models 49

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

Note: Selection of margin models has no impact on fully funded assets (e.g. cash equities).

calculate()

Calculate the cashflow and margin for a transaction. The algo account must have sufficient cash to cover
for the transaction to happen.

Parameters

• order (order object.) – Order object to process.

• quantity (float) – Amount to trade.

• price (float) – Traded price.

• position (float) – Current position in the asset with sign.

• timestamp (pandas.Timestamp) – Current timestamp.

• last_fx (float) – FX rate for conversion.

• underlying_px (float) – Underlying price for option.

• pos (position object.) – Position object to process.

Returns
A tuple of cashflow, margin.

Return type
(float, float)

exposure_margin()

Compute the exposure margin, given an asset and position in that asset. This is used for end-of-day mark-
to-market settlement computation and is settled against the account. If the account is short of the required
cash, the account is frozen for further trading.

Parameters

• asset (asset object.) – Asset in which margin to calculate.

• exposure (float) – current exposure in the asset.

• timestamp (pandas.Timestamp) – current timestamp

Returns
exposure margin

Return type
float

class blueshift.finance.margin.NoMargin

No margin. This model allows any amount of leverage for unfunded products (e.g. forex or derivatives).

class blueshift.finance.margin.FlatMargin

Flat margin on total exposure as percentage. The parameter intial_margin is used to compute the fraction of
the exposure required to be posted as margin for a transaction. This means 1/margin is the leverage offered.
The default value is 10% (i.e. 10x leverage). The parameter maintenance_margin is applied for computation of
margin required for carrying an overnight position. It defaults to the same value as the initial_margin - that is,
no extra margin is charged for overnight positions.

Parameters

• intial_margin (float) – Initial margin for a trade.

50 Chapter 6. Objects, Models and Constants

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

• maintenance_margin (float) – Maintenance margin.

class blueshift.finance.margin.RegTMargin

RegT margin. This is derived from FlatMargin class with set values of intial_margin at 0.5 (50%) and mainte-
nance_margin the same as the initial_margin for carrying an overnight position.

class blueshift.finance.margin.VarMargin

Value-at-risk margin on total exposure - also known as portfolio margin. On blueshift, this is applied to each
asset separately based on a multiplier of recent historical volatility. The formula is max(vol, vol_floor)*vol_factor.
The default value of vol_factor is 3 (approximating a 99% VaR for normally distributed returns). The parameter
vol_floor defaults to 0.05 (i.e. a minimum 5% volatility). The default value of lookback for historical volatility
computation is 20. Volatilities are computed based on daily returns (daily volatility).

Parameters

• vol_factor (float) – Factor (z-score) for the probability threshold.

• vol_floor (float) – Minimum volatility level (percentage).

• vol_lookback (float) – Lookback to compute historical volatility.

6.5.3 Commissions and Cost Models

class blueshift.finance.commission.CostModel

CostModel defines the broking commission/ brokerage cost modelling (plus any exchange fees and/or tax/ reg-
ulatory charges, which defaults to zero and cannot be modified by the user). A concrete implementation must
define the calculate method.

Parameters

• commissions (float) – Brokerage commission - interpretation depends on implementa-
tion.

• cost_cap (float) – Max possible brokerage.

• cost_floor (float) – Minimum brokerage levied.

• cost_on_sell_only (bool) – If brokerage only on sell leg.

• **kwargs – For compatibility, see below.

Keyword Arguments

• cost (float) – if supplied, overwrites the commission parameter.

• min_trade_cost (float) – if supplied, overwrites the cost_floor parameter.

calculate()

Calculate the commission and charges for the transaction. Commission is the fees deducted by the broker
for this particular transaction. Charges are any exchange fees and/ or government or regulatory charges on
top.

Parameters

• order (order object.) – Order object to process.

• quantity (float) – Traded amount.

• price (float) – Traded price.

• last_fx (float) – FX rate for conversion (defaults to 1.0).

6.5. Simulation Models 51

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

Returns
A tuple of commission, charges.

Return type
(float, float)

rollcost()

Costs for rolling positions overnight. This is usually applicable for rolling margin trading positions (e.g
Forex CFDs).

Parameters
position (dict) – Open positions.

Returns
A tuple of costs, margin.

Return type
(float, float)

Note: the input is a dictionary of current open positions - keyed by the assets and values are position
objects. The cost in the returned tuple is the cost to charge for the roll, and margin is the overnight margin
to settle.

class blueshift.finance.commission.NoCommission

Zero commission and trading charges.

class blueshift.finance.commission.PerDollar

Brokerage costs based on total value traded with cap and floor. This is derived from CostModel and takes in the
same parameters. The parameter commissions (or cost) is multiplied with the traded value (quantity times the
price) to determine the cost.

class blueshift.finance.commission.PerShare

Brokerage costs based on total quantity traded with cap and floor. This is derived from CostModel and takes in
the same parameters. The parameter commissions (or cost) is multiplied with the traded quantity to determine
the cost.

class blueshift.finance.commission.PerOrder

Flat brokerage costs per order. This is derived from CostModel and takes in the same parameters. The parameter
commissions (or cost) is the flat rate per order. If an order results in multiple trades (corresponding to multiple
fills), the charge is applied only once (per order).

class blueshift.finance.commission.PipCost

Brokerage costs based on total quantity traded with cap and floor. This is derived from CostModel and takes in
the same parameters. The parameter commissions (or cost) is multiplied with the traded quantity to determine
the cost. In addition, this also implements the rollcost method to calculate the overnight funding cost of carrying
over the position.

Note: This cost model is suitable for Forex assets only.

52 Chapter 6. Objects, Models and Constants

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

6.6 Miscellaneous Constants

6.6.1 Currency

blueshift.api.CCY

alias of Currency

6.6.2 Algo Modes and Other Constants

class blueshift.api.AlgoMode(value)
Track the current running mode of algo - live or backtest. BACKTEST for backtesting mode and LIVE for live
mode.

BACKTEST = 'BACKTEST'

LIVE = 'LIVE'

PAPER = 'PAPER'

EXECUTION = 'execution'

class blueshift.api.ExecutionMode(value)
Track the current execution mode of a live algo. AUTO stands for automatic sending of orders to the broker.
ONECLICK means the user must confirm the order before it is send to the broker.

AUTO = 'AUTO'

ONECLICK = 'ONECLICK'

class blueshift.api.AlgoCallBack(value)
An enumeration.

DATA = 'DATA'

TRADE = 'TRADE'

Note: All these objects can be import into the strategy code from blueshift.api.

These constants are useful when doing different processing based on the algo mode or execution mode. Query the
AlgoContext.mode for the mode of the current running algo. Query the AlgoContext.execution_mode attribute
from within strategy code to ascertain the current execution mode. Example:

from blueshift.api import AlgoMode

def initialize(context):
if context.mode == AlgoMode.LIVE:

print('some extra debug prints only during live trading ')

6.6. Miscellaneous Constants 53

Spring Technical Documentation, Release 2.1.0

54 Chapter 6. Objects, Models and Constants

CHAPTER

SEVEN

BUILT-IN LIBRARY

The platform has an exclusive and extensive built-in library. These library (blueshift.library) provide a select set of
functionalities unique to the platform, or wrapped from other packages for ease of use on the platform. These functions
are divided in categories as follow:

• Technicals
Includes technical indicators and automatic technical pattern identification functionalities.

• Statistical
Include perceptually important points and change points algorithms. Also include a collection of functions
that wraps various functionalities from other useful packages.

• Pipelines
A useful collection of ready-to-use pipeline filtering and factoring functions.

• Timeseries
A collection of functions and models useful for timeseries analysis and timeseries transformations.

• Machine learning
A useful collection of ready-to-use machine learning functionalities that wraps various other useful pack-
ages.

• Models
A useful collection of statistical and pricing models.

• Execution Algorithms
A selection of useful execution algorithms that can be directly used in a strategy to place orders.

The features and functionalities of the blueshift library functions are frequently updated and revised.

7.1 Technical Indicators

You can import all the technical indicators supported by the TA-Lib module from blueshift.library.technicals.indicators.

Note: Use the uppercase name (as defined by TA-Lib) for functions that return vectorized computation. Use the
lowercase name (with the same signature) for functions that return the last observation. The latter is useful for writing
event-driven strategy.

The TA-Lib functions, when imported from blueshift.library.technicals.indicators, can automatically identify required
columns from pandas DataFrame and have additional error handling. See examples below.

55

Spring Technical Documentation, Release 2.1.0

import talib as ta
from blueshift.library.technicals.indicators import ADX, adx

def initialize(context):
...

def signal_function(asset, price):
we assume price is a dataframe with OHLC columns

to call the TA-Lib function, we must extract the required
columns
x1 = ta.ADX(price.high, price.low, price.close)

not needed for the blueshift library version, the required
columns will be automatically extracted
x2 = ADX(price)

but we can still use the TA-Lib signature if we want to
both will work
x3 = ADX(price.high, price.low, price.close)

X1, X2 and X3 above are pandas Series. To get the last computed
value, use the lowercase version. X4 is a float.
x4 = adx(price)

7.1.1 Additional Indicators

Apart from the TA-Lib indicators, a few additional indicators are available as below.

blueshift.library.technicals.indicators.MA_XOVER(real[, ltma=?, stma=?, **kwargs=?])
Moving Average Cross-over

Inputs:
real: (any ndarray)

Parameters:
ltma: 20 stma: 5

Outputs:
real

blueshift.library.technicals.indicators.EMA_XOVER(real[, ltma=?, stma=?, **kwargs=?])
Exponential Moving Average Cross-over

Inputs:
real: (any ndarray)

Parameters:
ltma: 20 stma: 5

Outputs:
real

blueshift.library.technicals.indicators.BOLLINGER_BAND_DIST(real[, timeperiod=?, nbdevup=?,
nbdevdn=?, matype=?])

Bollinger Bands Distance From Upper (percentage)

56 Chapter 7. Built-in Library

Spring Technical Documentation, Release 2.1.0

Inputs:
real: (any ndarray)

Parameters:
timeperiod: 5 nbdevup: 2 nbdevdn: 2 matype: 0 (Simple Moving Average)

Outputs:
real

blueshift.library.technicals.indicators.HEIKIN_ASHI(real[, precision=?])
Heikin-Ashi

Returns heikin-ashi candles. The input price must be a dataframe with ‘open’, ‘high’, ‘low’ and ‘close’ columns.
The ‘volume’ column, if present, will be added to the returned dataframe.

Args:
price(dataframe): input OHLC (or OHLCV) prices.

Returns:
Dataframe (OHLC or OHLCV depending on the input).

blueshift.library.technicals.indicators.ICHIMOKU_CLOUD(real[, timeperiod1=?, timeperiod2=?,
timeperiod3=?, timeperiod4=?])

Ichimoku Cloud

Returns Ichimoku cloud lines in this order - conversion, base, spanA, spanB and lagging.

Args:
price(dataframe): input OHLC (or OHLCV) prices.

timeperiod1(int): timeperiod for conversion line.

timeperiod2(int): timeperiod for base line.

timeperiod3(int): timeperiod for leading span B.

timeperiod4(int): timeperiod for lagging span.

Returns:
Tuple of real.

blueshift.library.technicals.indicators.TREND_STALL(high, low, close[, bandwidth=?, timeperiod2=?,
threshold=?])

Trend Stall indicator checks the stalling of the momentum in the price based on ADX indicator and then deter-
mines if it is a stalling of bullish or bearish trend based on ROC. If ADX has peaked out and ROC is positive
(negative), it signifies stalling of a bullish (bearish) trend and has signal value -1 (+1). Ideally this signal needs
further confirmation. The bandwidth is used to smooth the raw ADX signal and the extreme points are determines
based on a neighbourhood of 2*bandwidth+1 points. Note: the timeperiod must be greater than bandwidth.

Returns Trend Stall signals.

Inputs:
price: (HLC Dataframe)

Parameters:
bandwidth=5 timeperiod: 14 threshold: 0.001

Outputs:
real

blueshift.library.technicals.indicators.TREND_SET(high, low, close[, bandwidth=?, timeperiod2=?,
threshold=?])

7.1. Technical Indicators 57

Spring Technical Documentation, Release 2.1.0

Trend Set indicator checks the beginning of a new trend in the prices based on ADX indicator and then deter-
mines if it is a starting a bullish or bearish trend based on ROC. If ADX has bottomed out and ROC is positive
(negative), it signifies start of a bullish (bearish) trend and has signal value +1 (-1). Ideally this signal needs fur-
ther confirmation. The bandwidth is used to smooth the raw ADX signal and the extreme points are determines
based on a neighbourhood of 2*bandwidth+1 points. Note: the timeperiod must be greater than bandwidth.

Returns Trend Stall signals.

Inputs:
price: (HLC Dataframe)

Parameters:
bandwidth=5 timeperiod: 14 threshold: 0.001

Outputs:
real

These functions follow the same naming convention, i.e. the uppercase function names return vectorized output, and
lower case for the last observation. An exception is HEIKIN_ASHI (returns DataFrame) which has no lowercase im-
plementation.

7.2 Technical patterns

blueshift.library.technicals.find_support_resistance(x, type_='pip', R=None, scale=[1.75, 2, 2.5, 3,
5, 7], tolerance=0.001)

Find support(s) and Resistance(s) lines based on either Fibonacci or the ‘PIP’ method.

The parameter R is used in the case of the ‘PIP’ support and resistance method. This is the same parameter
used to find the perceptually important points and should be in the form of 1+x, where x is the percentage move
determining a peak or trough. For e.g. to use 2% move, use R = 1.02. R value will be automatically determined
based on the input series, if set to None.

The parameter tolerance is used to determine the support lines. To consider a collection of peak (trough) points
forming a single resistance (support) line, each point must not deviate by more than the tolerance value from a
linear fit.

Args:
x (Dataframe or Series): Input data.

type_ (str): Can be either ‘fibonacci’ or ‘pip’

R (float): The returns ratio for the PIP method.

scale(float): Multiple of volatility for PIP identification.

tolerance (float): Tolerance for finding support lines.

Returns:
A list of lines object of type Line. For the pip method, always a pair of lines are returned. For the Fibonacci
method, 6 lines, corresponding to the Fibonacci levels are returned.

blueshift.library.technicals.search_chart_patterns(data, pattern, R=None, scale=[1.75, 2, 2.5, 3, 5,
7], tolerance=None, find_all=False,
adjust_trend=False)

function to find important points based patterns. This is made for daily returns. For other frequencies, the default
values of R may not be suitable. Scale range is used only when R is None or empty list.

58 Chapter 7. Built-in Library

Spring Technical Documentation, Release 2.1.0

Args:
data (frame or series): input price data.

pattern(obj or str): A pattern definition object.

R(float): R range for searching important points.

scale(float): Scale range for searching important points.

tolerance(float): For fine-tuning pattern matching.

find_all(bool): Return all or the last pattern in the sample.

adjust_trend(bool): If true, de-trend the points before matching.

Returns:
List. A list of pattern objects (empty list if no match found).

7.3 Statistical Functions

blueshift.library.statistical.find_imp_points()

Find perceptually important points (see https://www.cs.cmu.edu/~eugene/research/full/search-series.pdf)

Note: PIPs are an effort to algorithmically derive a set of important points as perceived by a human to describe a
time series. This typically can be a set of minima or maxima points or a set of turning points which are important
from a feature extraction perspective. Traditional technical analysis - like technical pattern identification - relies
heavily on PIPs. In addition, a set of PIPs can be used to compress a time series in a very useful way. This
compressed representation then can be used for comparing segments of time series (match finding) or other
purposes.

Args:
x(frame or series): Input price data.

R(float): (1+x) to identify PIP with minimum x move.

scale(float): Multiple of volatility for PIP identification.

Returns:
Tuple. The first element is a list of indices for the minimum points, second is the same for maximum points.
The third element of the tuple returns the compressed data (with only the peak and valleys).

blueshift.library.statistical.find_trends(x, type_='price', Q=10, minseglen=10, penalty=2)
Find change point in price levels or variance. This implements a unique change point analysis for non-stationary
time series to identify multiple changes in the deterministic linear trends. The implementation is based on identi-
fying change in simple regression coefficients (with penalty) and extends to multiple change point identification
using the popular binary segmentation methodology.

Args:
x (Dataframe or Series): Input pricing data.

type_ (str): Can be either “price” or “variance”.

Q (int): The maximum number of segments.

minseglen (int): The minimum length of a trend segment.

penalty (int): A penalty specifications usually between 2 to 10.

7.3. Statistical Functions 59

https://www.cs.cmu.edu/~eugene/research/full/search-series.pdf

Spring Technical Documentation, Release 2.1.0

Returns:
A list of lines (of LineType.trends type).

blueshift.library.statistical.get_hmm_state(x, covariance_type='full', n_iter=100)
Market classification based on hidden market model. The state with the lowest return is 0, and highest is 2. If
we have only a single state identified, it is assigned state 1. If only two states are identified, they are assigned 0
and 2. Else 0, 1 and 2 based on the conditional expected returns.

Args:
` x (Series)`: Input pricing data.

covariance_type (str): Passed on to the underlying `hmm.GaussianHMM call.

n_iter (int): Passed on to the underlying hmm.GaussianHMM call.

Returns:
A Series with the inferred state of the market.

blueshift.library.statistical.hedge_ratio(Y, X)
Returns the ADF p-value and regression coefficient (without intercept) of regression of y (dependent) against x
(explanatory).

Args:
Y (series or ndarray or list): input y series X (series or ndarray or list): input x series

Returns:
Tuple. p-Value of Augmented Dickey Fuller test on the regression residuals, and the regression coefficient.

blueshift.library.statistical.z_score(Y, X=None, lookback=None, coeff=None)
Given two series Y and X, and a lookback, computes the latest z-score of the regression residual (ratio of deviation
from the mean and standard deviation of the residuals).

Note:
X and Y must be of equal length, lookback must be less than or equal to the length of these series.

Args:
Y (series or ndarray or list): input y series X (series or ndarray or list): input x series lookback (int):
lookback for computation. coeff (float): regression coefficient.

Returns:
z-score of the regression residuals.

7.4 Timeseries Functions and Models

blueshift.library.timeseries.intraday_seasonality_func(series, period=None, calendar=None,
bandwidth=1.0, infer_frequency=True,
drop_first_minute=True)

Generate the intraday seasonality function. The input series is resampled to the target frequency, and a smoothed
intraday seasonality is estimated. The returned function takes in an intraday series index (pandas DatetimeIndex)
and computes the seasonality factors to be applied. The reciprocals of these factors can be used to de-seasonalize.
The bandwidth parameter is passed on to scipy.ndimage.gaussian_filter1d function for kernel smoothing.

Args:

series (pd.Series): Input series.

period (str): Valid pandas period string for resampling.

calendar (TradingCalendar): Calendar for session filtering.

60 Chapter 7. Built-in Library

Spring Technical Documentation, Release 2.1.0

bandwidth (float): Bandwidth for smoothing.

infer_frequency (bool): Infer input frequency (must be intraday).

Returns:
A callable of signature f(index) that accepts an input DatetimeIndex and returns the seasonality factor weight
(not normalized) for each timestamp in the index.

Warning: The input data as well as the input index to the returned function must have intraday frequency,
which must be higher than the frequency implied by period.

blueshift.library.timeseries.deseasonalize(series, seasonality_func, period, minutes_per_day=None,
calendar=None)

Given a seasonality_func, deasonalize an input series (multiplicative). The seasonality_func must be obtained
using intraday_seasonality_func. The number of trading minutes per day (implied from the calendar object)
should be divisible by the period.

Args:

series (Series): Input timeseries to deseasonalize.

seasonality_func (callable): See intraday_seasonality_func.

period (str): A valid pandas period string (e.g. “5T”).

calendar (TradingCalendar): A valid trading calendar.

Returns:
Deseasonalized input timeseries.

Warning: Input series must be indexed by DatetimeIndex and should have an intraday frequency.

blueshift.library.timeseries.reseasonalize(series, seasonality_func, period, calendar)
Given a seasonality_func, re-seasonalize an input series (previously deseasonalized). The seasonality_func must
be obtained using intraday_seasonality_func (and should be the same to deseasonalize it before). The number
of trading minutes per day (implied from the calendar object) should be divisible by the period.

Args:

series (Series): Input timeseries to deseasonalize.

seasonality_func (callable): See intraday_seasonality_func.

period (str): A valid pandas period string (e.g. “5T”).

calendar (TradingCalendar): A valid trading calendar.

Returns:
Deseasonalized input timeseries.

Warning: Input series must be indexed by DatetimeIndex and should have an intraday frequency.

7.4. Timeseries Functions and Models 61

Spring Technical Documentation, Release 2.1.0

class blueshift.library.timeseries.OnlineAutoARIMA(max_coeffs=5, period=None, calendar=None)
An online auto-arima model (compatible with sklearn) that uses blueshift.library.timeseries.auto_arima function
to fit an initial model. The model can be updated with new incoming data by calling the update method

Args:

max_coeffs (int): Maximum coefficents (AR + MA).

blueshift.library.timeseries.auto_arima(series, max_terms=5)
Auto-ARMA model for timeseries. Parameter max_terms determine the total coefficients to estimates (MA +
AR). This function search all combinations given a max_terms and selects the mode with the minimum AIC.
The input series must be stationary (else raises exception). Also the selected model must have residuals with
durbin-watson stats in the range of 1.95 to 2.05 (else raises exception). Returns the selected model.

Args:
series (Series): Input time series.

max_terms (int): Maximum coefficients (MA + AR).

Returns:
statsmodels.tsa.arima.model.ARIMA - the estimated ARIMA model.

Raises:
blueshift.errors.ModelError in case the model fit fails.

blueshift.library.timeseries.transform.resample(df, period, fill_value=None, fill_method='ffill',
limit=None, default_func=<function mean>,
calendar=None)

Base function to resample pandas dataframe or series to different periods.

Args:
df (dataframe or serues): Input time-series.

period (str): Target period string.

fill_value (number or dict): Fill value in fillna (None).

fill_method (str): Deafault fill method in fillna (ffill).

limit (int): max number to fill with method (None).

default_func (function): Function to aggregate with (numpy.mean).

calendar (TradingCalendar): Calendar for filtering non-trading minutes (None).

Returns:
Series or DataFrame. Aggregated and na-filled. If calendar is specified, returned series will include only
trading hours and sessions.

Note: In addition to this function, a host of derived functions to convert to specific frequencies are avail-
able. They are to_yearly, to_quarterly, to_monthly, to_weekly, to_daily, to_hourly, to_minutes30, to_minutes15,
to_minutes10 and to_minutes5. All this accepts the first argument as a Series (or Frame) and compute the re-
sampling based on the above defaults. Functions with period equal to or lower than daily (i.e. from to_daily to
to_minute5) also accepts a calendar object for filtering trading days and trading minutes.

blueshift.library.timeseries.transform.endpoints(df, on)
get a DatetimeIndex resampled from the input series based on the period specified by on.

Args:
df (dataframe or serues): Input time-series.

62 Chapter 7. Built-in Library

Spring Technical Documentation, Release 2.1.0

on (str): Period specification.

Returns:
pandas.DatetimeIndex. Timestamp of the last observation for each period.

blueshift.library.timeseries.transform.split(df, on)
Split a dataframe by time periods and get a list of data frames for further analysis.

Args:
df (dataframe or series): Input time-series.

on (str): Period specification.

Returns:
List. A list of dataframe (series) after the split.

blueshift.library.timeseries.transform.period_apply(df, on, func)
Apply aggregation on by periods. The parameter on must be a valid Pandas period string. The function must
accept a series and produce a single salar value.

Args:
df (dataframe or serues): Input time-series.

on (str): Period specification.

func (str, function, dict): Method specification

Returns:
Dataframe. Aggregated dataframe.

Note: In addition to this base function, a host of useful derivatives are also available, namely period_mean,
period_max, period_min, period_median, period_prod, period_sum, period_std, period_var. These accepts the
input series and the on parameter. The functions applied to each of these cases are obvious from the function
names.

blueshift.library.timeseries.transform.rollapply(df, width, func, y=None, by=0, by_column=True,
fill=True, partial=False, align='right',
coredata=False, **kwargs)

Roll apply for Pandas, with R-like functionalities. If by_column is False, entire dataframe subset for the window
will be available for the user supplied function func, otherwise func is applied separately to each column.

Note:
User supplied function (func) must return a scalar. The function must accept an input array/frame/series
and optional kwargs. If y is not None, the second argument must be y.

Args:
df (dataframe or series): Input time-series.

width (int): Width of the window.

func (function): A Function that returns a scalar.

y (dataframe or series): Optional second input time-series.

by (int): Rows to skip (will be filled with NA).

by_column (bool): Applies func to each column if True

fill (bool): Fill missing values if true.

partial (bool): See R rollapply documentation.

7.4. Timeseries Functions and Models 63

Spring Technical Documentation, Release 2.1.0

align (bool): See R rollapply documentation.

coredata (bool): Feeds the numpy array to func if true.

Returns:
Dataframe or series. Returns results of applying func.

Note: In addition to this base function, a list of derivatives are available as well, namely run_sum, run_prod,
run_min, run_max, run_mean, run_median, run_std, run_var, run_skew, run_kurt, run_cov, run_corr. These
functions accept an input series (or frame) and a window size (n). If the third parameter cumulative is True, the
result if cumulative application with minimum size n (all values before becoming NaN).

blueshift.library.timeseries.transform.cumulative_apply(df, func, min_period=1, by_column=True,
fill=True, partial=False, align='right',
coredata=False, **kwargs)

R-style reduce for Pandas, with R-like functionalities. If by_column is False, entire dataframe subset for the
window will be available for the user supplied function func, otherwise func is applied separately to each
column.

Note:
User supplied function (func) must return a scalar.

Args:
df (dataframe or series): Input time-series.

func (function): A Function that returns a scalar.

min_period (int): Mimimum width of the window.

by_column (bool): Applies func to each column if True

fill (bool): Fill missing values if true (locf).

partial (bool): Ignored.

aligh (bool): See R rollapply documentation.

coredata (bool): Feeds the numpy array to func if true.

Returns:
Dataframe or series. Returns results of applying func.

Note: For the derivative functions, see roll_apply.

7.5 Statstical and Pricing Models

blueshift.library.models.bs.bs_plain_vanilla_option(atmf, strike, imp_vol, time, option_type,
annualization_factor)

Black 76 plain vanilla European options pricing. Parameter time can be a float (in years to expiry) or a pandas
Timedelta object or a Timestamp (tz-aware). Parameter option_type can be either a OptionType enumeration or
one of [“CALL”, “PUT”].

Inputs:
atmf: (float) strike: (float) imp_vol: (float) time: (float) option_type: (str) annualization_factor: (float)

64 Chapter 7. Built-in Library

Spring Technical Documentation, Release 2.1.0

Outputs:
real

blueshift.library.models.bs.bs_implied_vol(atmf, strike, price, time, option_type, annualization_factor)
Black 76 plain vanilla European options implied volatility. Parameter time can be a float (in years to expiry)
or a pandas Timedelta object or a Timestamp (tz-aware). Parameter option_type can be either a OptionType
enumeration or one of [“CALL”, “PUT”].

Inputs:
atmf: (float) strike: (float) price: (float) time: (float) option_type: (str) annualization_factor: (float)

Outputs:
real

blueshift.library.models.bs.bs_plain_vanilla_greek(atmf, strike, imp_vol, time, option_type,
annualization_factor)

Black 76 plain vanilla European options greek. Parameter time can be a float (in years to expiry) or a pandas
Timedelta object or a Timestamp (tz-aware). Parameter option_type can be either a OptionType enumeration or
one of [“CALL”, “PUT”]. Supported greeks are one of [‘DELTA’, ‘VEGA’,’THETA’ and ‘GAMMA’].

Inputs:
atmf: (float) strike: (float) imp_vol: (float) time: (float) option_type: (str) greek: (str) annualization_factor:
(float)

Outputs:
real

7.6 Machine Learning Functions

blueshift.library.ml.estimate_random_forest(df)
Estimate random forest regression for input DataFrame, assuming the last column to be the predicted variable,
and everything else are predictors.

Args:
df (DataFrame): Merged frame of X and Y of training set.

Returns:
A random forest fitted model based on the input dataframe.

blueshift.library.ml.predict_random_forest(regr, df)
Forecast using a fitted model, assuming the last row in the input DataFrame are the observations to be predicted
and the last but one column are the predictors in the model.

Args:
regr (object): A model object for prediction

df (DataFrame):

7.6. Machine Learning Functions 65

Spring Technical Documentation, Release 2.1.0

7.7 Pipeline Functions

blueshift.library.pipelines.select_universe(lookback, size)
Returns a custom filter object for volume-based filtering.

Args:
lookback (int): lookback window size size (int): Top n assets to return.

Returns:
A custom filter object

from library.pipelines.pipelines import select_universe

pipe = Pipeline()
top_100 = select_universe(252, 100)
pipe.set_screen(top_100)

blueshift.library.pipelines.average_volume_filter(lookback, amount)
Returns a custom filter object for volume-based filtering.

Args:
lookback (int): lookback window size amount (int): amount to filter (high-pass)

Returns:
A custom filter object

from library.pipelines.pipelines import average_volume_filter

pipe = Pipeline()
volume_filter = average_volume_filter(200, 1000000)
pipe.set_screen(volume_filter)

blueshift.library.pipelines.filter_assets(func=None)
Returns a custom filter object to filter assets based on a user supplied function. The function must return True
for assets that are selected and False for assets to be filtered out. It should accept a single argument (an asset
object).

Args:
func (callable): A function for filtering.

Returns:
A custom filter object

from library.pipelines.pipelines import filter_assets
from blueshift.assets import Equity
context.universe = [symbol(AAPL), symbol(MSFT)]

pipe = Pipeline()
filter out non-Equity assets
func = lambda asset:isinstance(asset, Equity)
asset_filter = filter_assets(func)
pipe.set_screen(asset_filter)

blueshift.library.pipelines.filter_universe(universe)
Returns a custom filter object to filter based on a user supplied list of assets objects. This is useful where we still
want to use the underlying pipeline computation facilities, but want to specify assets explicitly.

66 Chapter 7. Built-in Library

Spring Technical Documentation, Release 2.1.0

Args:
universe (list): A list of asset objects to keep.

Returns:
A custom filter object

from library.pipelines.pipelines import filter_universe
context.universe = [symbol(AAPL), symbol(MSFT)]

pipe = Pipeline()
universe_filter = filter_universe(context.universe)
pipe.set_screen(universe_filter)

blueshift.library.pipelines.exclude_assets(universe)
Returns a custom filter object to filter based on a user supplied list of assets objects to exclude.

Args:
universe (list): A list of asset objects to exclude.

Returns:
A custom filter object.

from library.pipelines.pipelines import filter_universe
context.exclude = [symbol(AAPL), symbol(MSFT)]

pipe = Pipeline()
exclude_filter = filter_universe(context.exclude)
pipe.set_screen(exclude_filter)

blueshift.library.pipelines.returns_factor(lookback, offset=0)
Returns a custom factor object for computing simple returns over a period (lookback).

Args:
lookback (int): lookback window size offset (int): offset from the end of the window

Returns:
A custom factor object.

from library.pipelines.pipelines import returns_factor
pipe = Pipeline()
momentum = returns_factor(200)
pipe.add(momentum,'momentum')

blueshift.library.pipelines.filtered_returns_factor(lookback, filter_, offset=0)
Returns a custom factor object for computing simple returns over a period (lookback), with a volume filter applied.
Equivalent to separately applying period_returns and average_volume_filter above.

Args:
lookback (int): lookback window size filter_ (CustomFilter): a custom volume filter offset (int): offset from
the end of the window

Returns:
A custom factor object.

from library.pipelines.pipelines import average_volume_filter, period_returns2

pipe = Pipeline()
(continues on next page)

7.7. Pipeline Functions 67

Spring Technical Documentation, Release 2.1.0

(continued from previous page)

volume_filter = average_volume_filter(200, 1000000)
momentum = filtered_returns_factor(200,volume_filter)
pipe.add(momentum,'momentum')

blueshift.library.pipelines.technical_factor(lookback, indicator_fn, indicator_lookback=None)
A factory function to generate a custom factor by applying a user-defined function over asset returns.

Args:
lookback (int): lookback window size indicator_fn (function): user-defined function indicator_lookback
(int): lookback for user-defined function.

Returns:
A custom factor object applying the supplied function.

Note:
The indicator_fn must be of the form f(px, n), where px is numpy ndarray and lookback is an n. Also the
lookback argument above must be greater than or equal to the other argument indicator_lookback. If None
it is set as the same value of lookback.

from library.pipelines.pipelines import technical_factor

pipe = Pipeline()
rsi_factor = technical_factor(14, rsi)
pipe.add(rsi_factor,'rsi')

7.8 Execution Algorithms

These execution algorithms are designed to be used with the order to place advanced algorithmic orders. These ad-
vanced order objects are different from the simpler Order object, but follow similar interface and attributes with equiv-
alent meaning.

class blueshift.library.algos.PassiveAggressiveOrder(asset: Asset, quantity: int, limit_price: float,
timeout: int = 30, convert_to_market: bool =
False, **kwargs)

Algo Order that places a limit order, and waits for the duration of the order as specified (timeout). At the end
of the specified duration, if the order is still not complete, we cancel the limit order, and optionally replace the
remaining part to a market order.

Args:
asset (Asset): Asset for the order.

quantity (int): Quantity for the order.

limit_price (number): Limit price for the order.

timeout (int): Timeout in minutes before cancellation.

convert_to_market (bool): Convert to market order if not filled.

Optional keywords arguments as applicable for ordering functions can be passed on as well. A positive quantity
is a buy order.

class blueshift.library.algos.AdaptiveOrder(asset: Asset, quantity: int, price_offset: float, timeout: int
= 30, delay: float = 1, convert_to_market: bool = True,
offset_decay=None, **kwargs)

68 Chapter 7. Built-in Library

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Spring Technical Documentation, Release 2.1.0

Adaptive Order is a passive-aggressive style where we first place a limit order off by offset amount of from the
best bid (offer) for a buy (sell) order (in the favour of the direction of the order). For the duration of the strategy
(timeout), we periodically (delay) look at the fill and update the order limit price - by adjusting the bid (offer)
at the current market level. If by the end of timeout the period, the order is still not filled (or partially filled),
we cancel the initial limit order and optionally replace it with a market order with the remaining amount. If
offset_decay is supplied, it must be a positive number less than 1, and for each order modification, the current
price offset is multiplied by this value. A low offset decay moves fast to the best bid/offer and a high value moves
to the best bid/offer slowly. Omit this parameter to keep the same offset for all order modification requests.

Note: Fractional values are allowed for delay.

Args:
asset (Asset): Asset for the order.

quantity (int): Quantity for the order.

price_offset (number): Offset from the best bid or offer.

timeout (int): Timeout in minutes before cancellation.

delay (number): Number of minutes to wait before update.

convert_to_market (bool): Convert to market order if not filled.

Optional keywords arguments as applicable for ordering functions can be passed on as well. A positive quantity
is a buy order.

class blueshift.library.algos.MarketIfTouched(asset: Asset, quantity: int, target_price: float, timeout:
int = 30, delay: float = 1, **kwargs)

Conditional order waits for a specific condition to meet before placing the order (at limit or at market). The
algo waits for a timeout number of minutes before the condition is met, else gets cancelled. It accepts a callable
(condition) of the signature f(context, data) and must evaluate to True if the condition is fulfilled. The parameter
delay determines the delay (minutes) between two successive condition checks. For Market-If-Touched orders,
if the specified target_price is reached, a market order is triggered.

Note: Fractional values are allowed for delay.

Args:
asset (Asset): Asset for the order.

quantity (int): Quantity for the order.

target_price (float): Price that triggers the order.

timeout (int): Timeout in minutes before cancellation.

delay (number): Number of minutes between consecutive checks.

Optional keywords arguments as applicable for ordering functions can be passed on as well. A positive quantity
is a buy order.

class blueshift.library.algos.LimitIfTouched(asset: Asset, quantity: int, target_price: float, limit_price:
float, timeout: int = 30, delay: float = 1, **kwargs)

Conditional order waits for a specific condition to meet before placing the order (at limit or at market). The
algo waits for a timeout number of minutes before the condition is met, else gets cancelled. It accepts a callable

7.8. Execution Algorithms 69

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Spring Technical Documentation, Release 2.1.0

(condition) of the signature f(context, data) and must evaluate to True if the condition is fulfilled. The parameter
delay determines the delay (minutes) between two successive condition checks. For Limit-If-Touched orders, if
the specified target_price is reached, a limit order is triggered at the limit_price.

Note: Fractional values are allowed for delay.

Args:
asset (Asset): Asset for the order.

quantity (int): Quantity for the order.

target_price (float): Price that triggers the order.

limit_price (number): Limit price for the order.

timeout (int): Timeout in minutes before cancellation.

delay (number): Number of minutes between consecutive checks.

Optional keywords arguments as applicable for ordering functions can be passed on as well. A positive quantity
is a buy order.

class blueshift.library.algos.IcebergOrder(asset: Asset, quantity: int, slices: int, order_type: ['market',
'limit'] = 'market', price_offset: float = 0, timeout: int = 30,
delay: float = 1, cancel_on_timeout: bool = False,
**kwargs)

Iceberg order breaks up a large order to a number of (slices) smaller orders and place each of them one by one. The
individual order can be either regular or adaptive (order_type). For regular order, if limit_price is specified, each
order is placed as limit order at the same price. Else for regular order, it becomes a market order. For adaptive
orders, price_offset is required - the offset (in our favour, can be negative) to apply to the current best bid (buy
or offer (sell). If the whole order is not complete by the time specified by timeout (in minutes), the pending
orders are cancelled if cancel_on_timeout is True, else they are left as is. The delay parameters determines the
minimum delay between successive orders. The next order is sent if the previous order is filled AND the delay
time has elapsed. If delay is 0, the next order is sent as soon as the previous one is filled.

Args:
asset (Asset): Asset for the order.

quantity (int): Quantity for the order.

slices (int): A callable to evaluate the condition.

order_type (str): Order type, can be either ‘market’ or ‘limit’.

price_offset (number): Limit price offset for the order.

timeout (int): Timeout in minutes before cancellation.

cancel_on_timeout (bool): Cancel pending orders if timed-out.

Optional keywords arguments as applicable for ordering functions can be passed on as well. A positive quantity
is a buy order.

An example of use case is shown below

from blueshift.api import symbol, schedule_function, date_rules, time_rules
from blueshift.api import get_datetime, order, terminate, schedule_once

from blueshift.library.algos import IcebergOrder
(continues on next page)

70 Chapter 7. Built-in Library

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Spring Technical Documentation, Release 2.1.0

(continued from previous page)

def initialize(context):
asset = symbol('ACC')

algo = IcebergOrder(asset, 50, 10, order_type='market', timeout=300)
context.algo = algo

schedule_once(place_order)
schedule_function(strategy,

date_rules.every_day(),
time_rules.every_nth_minute(1))

def place_order(context, data):
order(context.algo)

def strategy(context, data):
if not context.algo.is_open():

msg = f'{get_datetime()}:exiting strategy, algo execution terminated.'
terminate(msg)

In the above example, the strategy instantiates an Iceberg order and places the order as soon as possible. Once the order
is placed, it periodically checks the status, and once completed, exits the strategy.

7.9 Library Objects

class blueshift.library.common.Signal(value)
An enum for trading signal. You can use the values of these enums for placing order directly. Although all three
of EXIT, LONG_EXIT and SHORT_EXIT has numerical value of 0, they still are distinct enumerations. No value
is defined for the member NO_SIGNAL, do not attempt to use its value for any computation.

LONG_ENTRY = 1

LONG_ENTRY_STRONG = 2

SHORT_ENTRY = -1

SHORT_ENTRY_STRONG = -2

LONG_EXIT = 0

SHORT_EXIT = 0

EXIT = 0

NO_SIGNAL = NO_SIGNAL

class blueshift.library.common.LineType(value)
Enum for line types generated by find_support_resistance as well as find_trends functions.

SUPPORT = 'support'

RESISTANCE = 'resistance'

7.9. Library Objects 71

Spring Technical Documentation, Release 2.1.0

TREND = 'trend'

class blueshift.library.common.Line(points, type_, score=0, fit=True)
A class to capture important points technical support or resistance lines. The param points is a series (of points
that makes up the line). The parameter type_ can be either string “support” or “resistance” or of Enum type
SupportType.

type

Line type of this line.

line

Returns the pandas Series that represents the line.

score

User defined score, or the R-squared fit for the given points.

slope

The slope of the line.

intercept

The intercept of the line.

is_breakout(level, dt)
Given the current level and current date (date-like or timestamp), find if we have a break-out. This is only
applicable for line types SUPPORT and RESISTANCE. A break is breaking below support or breaking
above resistance.

get_level(dt)
Given a date-like or timestamp, find the implied level from the line.

plot()

Use Pandas plot method to plot the underlying line.

class blueshift.library.common.Pattern(name, points, lines, level, aspect)
A class to capture important points based patterns. This has the following attributes

• name: is the name of the pattern type,

• points: are the price points (important points) that make the pattern.

• lines: A list of lines that define the pattern.

• level: is usually the level that is watched for breach.

• aspect is any (usually dimension-less) feature of the particular pattern that is deemed important.

The lines parameters are a list of Line objects (may be an empty list for patterns purely defined by important
points).

plot()

Use Pandas plot method to plot the pattern.

72 Chapter 7. Built-in Library

CHAPTER

EIGHT

ERRORS AND EXCEPTIONS

Errors and exceptions, including from user strategy, are caught by the platform engine and handled based on their
category and recoverability. If an error is recoverable, Blueshift logs the error details and continues to run. If it is
irrecoverable, Blueshift executes the exit processes (graceful exit, saving data etc.). Errors are usually classified based
on their types and sources, as described below.

• User Strategy Errors
Any errors generated from user strategy code are considered fatal and no attempt is made to recover.

• Recoverable Errors
Errors due to a drop in connection, or from broker API (e.g. invalid or illegal orders, bad data from broker
etc.) are considered recoverable. If a recoverable error is raised, the event loop stops the current iteration
at that point, and starts the next iteration as usual in the next cycle. If the error continues to repeat, after a
certain threshold, it is upgraded to irrecoverable error.

• Irrecoverable Errors
Any errors during the Blueshift event loop initialization is considered irrecoverable in a fail-fast manner (in-
cluding connection errors, API errors or validation failures). Once the event loop starts normal cycles, any
unexpected error (e.g. disk full, or server crash) or any error upgraded (as described above) is considered
fatal.

8.1 Error Handling in Strategy

It is usually a good idea to handle possible errors in the strategy itself, rather than leaving it to the platfrom. Strategy
code can use the Python try-except block to achieve the same. Below are a list of useful errors that can be handled from
within the strategy.

class blueshift.errors.ValidationError(*args, **kwargs)
Validation failed. Raise this exception to flag invalid inputs or parameters.

class blueshift.errors.SymbolNotFound(*args, **kwargs)
Symbol requested does not exist. Usually raised when symbol function fails.

class blueshift.errors.ServerError(*args, **kwargs)
Received an error response from broker data or trade API.

class blueshift.errors.IllegalRequest(*args, **kwargs)
Illegal parameters for API request.

class blueshift.errors.BrokerError(*args, **kwargs)
Something went wrong while connecting to the broker or fetching data over broker API.

73

Spring Technical Documentation, Release 2.1.0

class blueshift.errors.APIError(*args, **kwargs)
Broker server sent an error response, either because of invalid or illegal input parameters, or the server failed to
respond temporarily.

class blueshift.errors.BrokerConnectionError(*args, **kwargs)
Error in connecting to broker servers.

class blueshift.errors.InsufficientFund(*args, **kwargs)
Insufficient fund in account. Could not complete the transaction.

class blueshift.errors.TradingControlError(*args, **kwargs)
A trading risk control check failed. See Risk Management APIs.

class blueshift.errors.BadDataError(*args, **kwargs)
Received malformed data from broker server.

class blueshift.errors.NoDataForAsset(*args, **kwargs)
Data query extended beyond available start date. See data.history.

class blueshift.errors.HistoryWindowStartsBeforeData(*args, **kwargs)
Data query in pipelines extended beyond available start date. See Pipeline APIs.

class blueshift.errors.NoSuchPipeline(*args, **kwargs)
Pipeline requested is not registered. See Pipeline APIs.

In addition to error handling, it is highly recommended that strategy code also applies input data sanity checks.

74 Chapter 8. Errors and Exceptions

CHAPTER

NINE

HOW-TOS AND EXAMPLES

9.1 How to code a trading strategy on Spring

On the platform you can use the full power of Python to code your strategy logic. To do that, you follow - roughly - the
following steps

• Have a clearly defined strategy logic
The platform will run your strategy as you have coded it. Make sure your strategy logic clearly identifies
all scenarios and has an appropriate logical flow.

• Identify instruments, input data and variables
Clearly identify the assets that you are going to trade, the data that is required to generate trade entry/ exit
and any variables you need to track.

• Identify the events handlers that suit the strategy
The platform offers a number of ways to respond to the market with different choice of event handlers.
Choose the one that suits your case the best

• Initialize your strategy properly
Use the initialize to make sure your strategy has a proper starting state. For example define your trading
assets, as well as initialise the variables you need to track. You can optionally parameterise your strategy
here.

• Write efficient and robust strategy
Use the event handlers from step 3 to write down the strategy. Separate the parts of the logic in individual
functions (so that it is easy to debug and easy to tweak). Fetch data only once in each of the strategy
iterations (instead of in each function where this data is used) and pass on to different functions. Choose
the order placing functions correctly, depending on your strategy logic. Also, validate data to check for
missing values and stale data.

Below are some guidelines on various steps involved in the process of writing an effective strategy.

9.2 What is the Python support on Spring

The platform support all legal Python code (version 3.6 or higher) subject to a few restrictions. It has a comprehensive
collection of white-listed modules that you can import as usual.

75

Spring Technical Documentation, Release 2.1.0

package use case
bisect An useful array sorting package.
cmath Provides access to mathematical functions for complex numbers.
cvxopt Package for convex optimization.
cvxpy A “nice and disciplined” interface to cvxopt.
datetime For manipulating dates and times in both simple and complex ways.
functools Higher-order functions and operations on callable objects.
hmmlearn For unsupervised learning and inference of Hidden Markov Models.
hurst for analysing random walks and evaluating the Hurst exponent.
arch ARCH and other tools for financial econometrics.
keras A deep learning API running on top of TensorFlow.
math Provides access to the mathematical functions defined by the C standard.
numpy Package for scientific computing with Python.
pandas High-performance, easy-to-use data structures and data analysis tools.
pykalman Implements Kalman filter and Kalman smoother in Python.
pytz Allows accurate and cross platform timezone calculations.
random Random number generators for various distributions.
scipy Efficient numerical routines for scientific computing.
sklearn For machine learning in Python.
statsmodels For statistics in Python.
talib For technical analysis in Python.

This covers a range of useful modules from technical indicators to advanced machine learning programs. If you attempt
to import and use any other packages not listed here, you will get an import error.

There are a few other restrictions as listed below.

• certain built-in functions (e.g. type, dir etc.) are restricted on the platform.

• identifier (variables, functions etc.) names should not start or end with underscore.

• while you can use the print function in your strategy code, the maximum output is restricted.

• async programming and generator functions are not allowed on the platform. Also looping with while is banned,
use a for loop instead.

9.3 How to create and use variables

The strategy code is a collection of functions that are called by the Blueshift event loop at appropriate times. You can
use the normal Pythonic way to create and use local variables for use within each individual function. For accessing the
same variables across functions, we recommend using the context variable. Since this is a Python object, you can add
attributes to it to store your variable. Also since this variable is passed in all the event callbacks, you can access this
variable and its attributes in all functions. This makes it a superior way to pass around variables across your strategy
functions (instead of using, say, global or module-level variables).

Note: There are certain restrictions on variable names that you can use. Apart from being a legal Python identifier, it
also must not start or end with underscore (‘_’). In addition, there are some built-in attributes of the context variable
and user variable name should not clash with them (else the strategy will crash with errors).

See the point on asset fetching below to see an example.

76 Chapter 9. How-Tos and Examples

Spring Technical Documentation, Release 2.1.0

9.4 How to fetch assets in strategy code

Use the symbol API function to convert an asset ticker or symbol to an asset object. This object can then be used in any
API functions (e.g. to place order or fetch data) that require an asset object as an input. To use this function, import it
from the blueshift.api module in your strategy code.

from blueshift.api import symbol, order_target
from blueshift.api import get_datetime

def initialize(context):
convert the ticker "TCS" to the TCS asset
we can also shorten it by direct assignment
context.asset = symbol('TCS')
asset = symbol('TCS')
context.asset = asset

def handle_data(context, data):
maintain 1 unit position in TCS stock
order_target(context.asset, 1)

For more on what symbol to use for an asset, please see symbology.

Note, here we are using the context object as a store of strategy variables (the asset(s) to trade in this case). We can use
the context object for all variables our strategy needs to track.

9.4.1 Fetching Equity Futures instruments

Strategy code can fetch futures instruments as either dated or rolling assets. For dated instruments, specify the ticker as
SYM<YYYYMMDD>, where SYM is the underlying symbol. For rolling futures, use SYM-I for the first futures (near-month)
and SYM-II for the far-month.

from blueshift.api import symbol

def initialize(context):
acc_dated_futures = symbol('ACC20210826')
acc_first_futures = symbol('ACC-I')
acc_second_futures = symbol('ACC-II')

Important: Rolling futures will always be resolved to dated futures in live trading and the positions will be tracked
in terms of the dated futures. For backtesting, positions are tracked in terms of rolling futures. Also placing order with
rolling assets may be restricted after a cut-off period each trading day if the underlying broker requires it. The cut-off
time is typically 15 minutes before the market close.

9.4. How to fetch assets in strategy code 77

Spring Technical Documentation, Release 2.1.0

9.4.2 Fetching Equity Options instruments

Fetching options instruments are similar to futures. Use the symbology SYM<YYYYMMDD>TYPE<STRIKE> to fetch a
specific option, where SYM is the underlying <YYYYMMDD> is the expiry date, TYPE is the option type (can be either
CE or PE for call and put respectively) and STRIKE is the strike price without any leading or trailing zeros. For rolling
options, replace the expiry with expiry identifier. For strikes specified in terms of offset, replace the STRIKE part with
offset specifications as described in the symbology.

from blueshift.api import symbol

def initialize(context):
Nifty Aug 21 call at 16000 strike
asset1 = symbol('NIFTY20210826CE16000')
Nifty near-month ATMF+100 call
asset2 = symbol('NIFTY-ICE+100')
Nifty current-week ATMF put
symbol('NIFTY-W0PE-0')

9.5 How to place orders

Use the ordering functions for placing orders. The first argument must be an asset object. Blueshift offers a number of
ways to place orders, including auto-sizing and targeting orders.

We recommend target order functions for placing orders from a strategy. The family of targeting order functions work
by checking the current positions and outstanding orders for the asset at the time of placing order, and place orders for
incremental amounts, if any, to achieve the specified target. The target can be in terms of units, or percent of the current
portfolio value, or total value of the required position in the specified asset. An example is given below.

from blueshift.api import symbol, order_target

def initialize(context):
context.asset = symbol('TCS')

def handle_data(context, data):
maintain 1 unit position in TCS stock
order_target(context.asset, 10)

In the above example, the handle_data function is called every minute, which in turn calls the order_target API function.
The first time this function is called, a new order for 10 stocks of TCS is placed. The next time this function is called (and
in any subsequent calls), the target, i.e. 10 stocks of TCS in our algo positions is already achieved. So the incremental
quantity required is 0, and hence no further orders are sent out to the broker anymore, as long as the target position is
maintained. This works very differently if we did not use a target function. For example, if we used simply the basic
order function, for each call (initial or subsequent) a fresh order of 10 units will be sent to the broker.

Let’s look at another example.

from blueshift.api import symbol, order_target_value, schedule_function
from blueshift.api import date_rules, time_rules

def initialize(context):
context.asset = symbol('TCS')
schedule_function(rebalance, date_rules.every_day(),

time_rules.market_close(hours=2, minutes=30))
(continues on next page)

78 Chapter 9. How-Tos and Examples

Spring Technical Documentation, Release 2.1.0

(continued from previous page)

def rebalance(context, data):
maintain INR 10,000 position in TCS stock
order_target_value(context.asset, 10000)

In this example, the rebalance function is called everyday, 2.5 hours before the market close. For the first time, this
will place an order worth INR (broker currency) 10,000 of TCS shares. In subsequent calls, if the market price of TCS
shares remain unchanged, no further orders will be sent. If the prices go down, the positions will fall below 10,000 and
to maintain the target, algo will send buy orders to achieve 10,000 in value. If the prices go up and the opposite will
happen (sell orders).

Order targeting in terms of portfolio percent works similarly, but to safeguard against market movement and order
failing due to lack in buying power, a haircut (usually 2% of the current portfolio value) is applied before calculating
the required quantities. For example, if the portfolio value is $10,000 and an order target percent of 0.25 is specified,
the computed target value will be $10,000 (portfolio value) X 0.98 (haircut) X 0.25 (target) or $2450. From there it
will follow the order target value behaviour as above. Note, a value or percent target does not guarantee the value of
the resulting positions or the execution price.

Important: We recommend using targeting functions for placing order, unless there is a strong reason not to. This
reduces the chance of an order machine-gunning (sending the same order many times over, due to bugs in strategy
logic).

Important: An order, when filled (partially or fully), results in a position. The asset used in the order function may be
different from that of the position it creates. This is true for rolling futures and options. For futures, backtest will create
the same (rolling) asset positions, but in live trading, they will be in dated futures. For option positions are always dated
instruments. For equities, they are usually the same assets, but if you specify product_type (for e.g. margin), that may
create a different asset for the position (EquityMargin, for e.g.).

9.6 How to fetch price data for signal generation

Use the data object for fetching historical or current data points. See examples below.

from blueshift.api import symbol

def initialize(context):
context.assets = [symbol('TCS'), symbol('WIPRO')]

def handle_data(context, data):
prices = data.history(context.assets, 'close', 100, '1m')
for asset in context.assets:

sig = generate_signal(prices[asset])

def generate_signal(price):
sig = 0
apply your data analysis logic here
note, in this case price is a pandas series with the
closing price of the asset
return sig

9.6. How to fetch price data for signal generation 79

Spring Technical Documentation, Release 2.1.0

Note, although we are using price data for each asset in the generate_signal function (a custom function we created), the
data query is done in one place, and for all assets together. Also, since we are using only the ‘close’ price, we queried
only for that field. This is an efficient way to query data (instead of calling data.history for each asset separately inside
the for loop or inside the generate_signal function). For more on how to query data see data.current and data.history.

Warning: Note, the current and the history method returns different types of objects based on the types of the
input arguments. The returned object type is the simplest possible, depending on the number of assets, number
of fields queried and whether we asked for current or historical data. see the function documents for the expected
returned data type.

9.7 How to write strategy code

Blueshift is an event driven engine. Use the event callbacks to write your strategy logic. Your strategy should always
include the initialize function (otherwise it is NOT a valid Blueshift strategy). Based on your underlying trading logic,
you have a number of options to arrange your strategy flow. Below are some examples, that assume we have a signal
function as below that checks the asset prices and determines if a trade to be initiated or not.

import talib as ta # import the ta-lib for RSI calculation

def signal_func(asset, price):
TODO: enter your trading logic here. The `price`
parameter is assumed to be a pandas series with closing
price for the assets at 1 minute candles. Below example
shows a simple RSI based entry logic and assume the asset
is shortable - i.e. margin equities or F&Os
rsi = ta.RSI(price, 14)
if rsi < 30:

return 1 # buy signal
elif rsi > 70:

return -1 # sell signal
else:

return 0 # neutral signal

In the above example, the signal function evaluates a simple RSI based entry condition.

Danger: Note the above signal function does not trigger only on cross-over but for the entire duration the condition
is true. For example, it will trigger a buy signal as long as RSI<30, not just the first time it crosses below 30. If
you trigger a basic order, it will generate a fresh order each time the signal function is evaluated (not just when
the cross-over happens). The appropriate order function in this case is targeting functions Alternatively, you can
modify the above function to trigger only on cross-over (by remembering the last RSI value in the strategy code,
for e.g. storing it as a context variable attribute).

80 Chapter 9. How-Tos and Examples

Spring Technical Documentation, Release 2.1.0

9.7.1 Strategy that trades periodically

Strategies that run (check trading signal and enter a position) on a periodic basis are best handled by the sched-
ule_function. Assume our strategy checks for entry/ exit every 5 minutes. We can code that as shown below

import talib as ta
from blueshift.api import symbol, schedule_function
from blueshift.api import date_rules, time_rules

def initialize(context):
context.freq = 5
context.quantity = 1
context.assets = [symbol('TCS'), symbol('WIPRO')]

schedule_function(rebalance, date_rules.every_day(),
time_rules.every_nth_minute(context.freq))

def rebalance(context, data):
prices = data.history(context.assets, 'close', 50, '1m')
for asset in context.assets:

price = prices[asset]
signal = signal_func(asset, price)
order_target(asset, signal)

def signal_func(asset, price):
rsi = ta.RSI(price, 14)
if rsi < 30:

return 1 # buy signal
elif rsi > 70:

return -1 # sell signal
else:

return 0 # neutral signal

Note that we have initialised the strategy in the initialize function that defines the stocks we want to trade and also
the trade frequency and the trade size. Secondly, we have split the logic in functions - for this simple case, only two
(rebalance and signal_func). Finally, we are querying data efficiently, only once per iteration (per trade frequency) and
fetching data for all assets at one go.

9.7.2 Strategy that trades conditionally

Sometimes, we may have to enter or exit based on condition or state of the algo. We tweak the above RSI strategy for
this example: we still use the same signal function, but want to enter once (and hold), and only in one stock (whichever
triggers the RSI condition first). We can code this strategy as follows.

import talib as ta
from blueshift.api import symbol, schedule_once, schedule_later
from blueshift.api import date_rules, time_rules

def initialize(context):
context.freq = 5
context.quantity = 1
context.traded = False
context.assets = [symbol('TCS'), symbol('WIPRO')]

(continues on next page)

9.7. How to write strategy code 81

Spring Technical Documentation, Release 2.1.0

(continued from previous page)

schedule_once(rebalance)

def rebalance(context, data):
if context.traded:

do nothing if already traded
return

not traded, check for RSI signal
prices = data.history(context.assets, 'close', 50, '1m')
for asset in context.assets:

price = prices[asset]
signal = signal_func(asset, price)

if signal !=0:
if an entry signal, place the order and mark
traded, break out of the for loop
order_target(asset, signal)
context.traded = True
break

if not context.traded:
if not traded, schedule itself again to run in 5 minutes
schedule_later(rebalance, context.freq)

def signal_func(asset, price):
rsi = ta.RSI(price, 14)
if rsi < 30:

return 1 # buy signal
elif rsi > 70:

return -1 # sell signal
else:

return 0 # neutral signal

Note that in the above example, we use a combination of schedule_once and schedule_later to run the rebalance function
conditionally. This capability gives a powerful way to express your strategy logic.

9.8 How to check order status

There are roughly two ways to do that. We can either use the get_open_orders to fetch a dict (keyed by order IDs) of
all orders currently open (i.e. not completed, cancelled, or rejected). Else, we can use the get_order function to fetch
an order by its order ID. Check the status attribute of the order object to know its status. See OrderStatus to know how
to interpret it.

82 Chapter 9. How-Tos and Examples

Spring Technical Documentation, Release 2.1.0

9.9 How to check open positions

See here for more details and code sample.

9.10 How to use stoploss and take-profit

On Blueshift, adding a stoploss or a take-profit target is just a convenience API function that automatically checks the
price level at the frequency of the event loop (i.e. one minute). Additionally, it also enforces a cool-off period (typically
30 minutes). Example below shows how to add a stoploss and take-profit to our original RSI strategy above (shows
only the relevant part).

from blueshift.api import set_stoploss, set_takeprofit

def rebalance(context, data):
prices = data.history(context.assets, 'close', 50, '1m')
for asset in context.assets:

price = prices[asset]
signal = signal_func(asset, price)
order_target(asset, signal)
set_stoploss(asset, 'PERCENT', 0.01) # stoploss of 1%
set_takeprofit(asset, 'PERCENT', 0.01) # stoploss of 1%

If we are exiting a position by a signal (i.e. not triggered by a stoploss or a take-profit exit), it is recommended to
remove the corresponding stoploss and take-proft targets as well. This makes the algo run more efficiently.

Warning: The asset to place order and the asset to track the stoploss or take-profit must be consistent. See the
caveat under placing trades for more. It is usually safer to query positions and then place stoploss or take-proft on
the assets from the positions dictionary.

9.11 How to parameterise my strategy

On Spring, you can parameterise your strategy so that you can launch backtests or live executions with dynamic input
at the time of launch (instead of hard-coding them in the strategy). This is done in two steps.

First make sure you have put all your parameters in a dictionary named params and have set it as an attribute of the
context variable in the initialize function. Just after that, call the set_algo_parameters function to set the params
dictionary as your parameters definition for the strategy. Use appropriate default values for your parameters while
defining the dictionary.

from blueshift.api import set_algo_parameters

def initialize(context):
strategy parameters
context.params = {'my_param1':0, 'my_param2':42}
set_algo_parameters('params')

The set_algo_parameters API call binds the context attribute params as strategy parameters. You can use any other
variable name as well, but params is recommended for easier tracking and understanding.

9.9. How to check open positions 83

Spring Technical Documentation, Release 2.1.0

In the second step, define your parameters while creating the strategy on the plaform. Once both are done successfully,
you will get options to select parameters while launching your strategy on the platform. Be careful to exactly match the
name of your parameters while creating your strategy parameters (else the default values will be seen by the strategy).

Important: If you are defining your strategy that accepts parameters as above, it is highly recommended that you add
validation in each of the parameter values before using them in the strategy. This is because the parameters entered
during launch and passed by the platform to your strategy can potentially be corrupted (mis-format, bad inputs etc.)

9.12 Good practices to follow for strategy building

Algorithmic trading can be advantageous as machines are faster than humans. But they are faster when things go
wrong as well. It is of utmost importance that we take proper steps to make our strategies fault-tolerant. Below is a
(non-exhaustive) set of points to keep in mind before you take your strategy live.

• Strategy is designed to be fault-tolerant for corrupt input data
At the base level, check if the data you have received is very much different from the last datapoints your
strategy had. Most exchanges usually follow a market volatility control for publicly traded securities. These
limit stock price movements and also enforce cool-off periods in such circumstances. If your algo received
some extreme data points, it is highly likely they are wrong. Even if they are true, the market volatility
control mechanism probably has already been triggered. If your strategy is not particularly designed to
exploit these situations, it is a good practice to pause any trading activity till saner data arrive.

• Strategy has necessary risk controls in place
This is, again, an absolute must. At the minimum, it should control the max number of orders it can send
(to control machine gunning), the max size of each order (machines do fat fingers too) and a kill switch
(a percentage loss below which it should stop automatically). Blueshift® has all these features, and then
some more. You can put controls based on the maximum position size, maximum leverage or even declare
a white-list (black-list) of assets that the algo can (cannot) trade.

• Checking/ cancelling pending open order before placing new orders
This one is an absolute must for live trading. A best practice is usually to cancel all open orders before
placing fresh orders, or, updating the existing orders as per the algo signals. Else it is easy to end up with a
machine gun order scenario - the algo firing up and queuing up orders faster than they can be processed. See
the code snippet below. We use the get_open_orders and cancel_order API functions to handle pending
orders, before placing fresh orders.

• Order placing and signal generations are isolated into specific functions
A strategy that places orders from multiple functions can mess up really fast. Make sure all your orders
are placed only through a specific function. In such a design, chances of unforeseen mis-behaviours are
considerably less.

• Strategy is not over-sensitive to latency
Orders will be sent and processed over regular internet. So any latency sensitive strategies (like cross ex-
change arbitrage or market-making) are bound to suffer. Also internet connections are prone to interruptions
or even complete outages. The strategy should be robust to such scenarios.

84 Chapter 9. How-Tos and Examples

Spring Technical Documentation, Release 2.1.0

9.13 Things to avoid while writing a strategy

• A strategy generating orders at a very high rate
These are more prone to instability, and also perhaps lose more in round trip trading costs than they make.
A hair-trigger signal generation method may result in such a scenario. So make sure your signal generation
is robust and expected holding periods are consistent with points above.

• A strategy that triggers orders continuously for the same prevailing condition
If you are trading based on some technical indicators, say RSI, you usually want to place an order when the
indicator crosses a threshold (a change of state). The intention is not to generate orders constantly as long
as the indicator stays below (or over) that threshold (a state). If you are using a state-based signal, make
sure the order functions are targeting in nature (e.g. the ubiquitous order_target_percent), not absolute
(e.g. order). In case you are using absolute orders, make sure your signal generation is based on change of
state, not the state itself

• A strategy trading close to the account capacity
Margin calls can put an automated strategy out of gear. Always ensure the account is funded adequately,
so that the algo runs in an expected way.

Risk management and monitoring makes all the difference between blowing out the bank roll and making handsome
profit. The above points will take care of some aspects of risk management, especially in automated trading set-up.
But bank-roll management, position sizing etc, are still some points that need to be deliberated carefully before taking
a strategy live. Also it is absolutely necessary we keep a close watch on the algo performance.

9.13. Things to avoid while writing a strategy 85

Spring Technical Documentation, Release 2.1.0

86 Chapter 9. How-Tos and Examples

CHAPTER

TEN

INDICES AND TABLES

• genindex

• search

87

Spring Technical Documentation, Release 2.1.0

88 Chapter 10. Indices and tables

PYTHON MODULE INDEX

b
blueshift.algorithm.context, 15
blueshift.api, 53
blueshift.assets, 40
blueshift.errors, 73
blueshift.library.algos, 68
blueshift.library.common, 71
blueshift.library.ml, 65
blueshift.library.models, 64
blueshift.library.pipelines, 66
blueshift.library.statistical, 59
blueshift.library.technicals, 58
blueshift.library.technicals.indicators, 56
blueshift.library.timeseries, 60
blueshift.protocol, 37
blueshift_data.readers.data_portal, 18

89

Spring Technical Documentation, Release 2.1.0

90 Python Module Index

INDEX

A
ABS (blueshift.assets.StrikeType attribute), 40
account (blueshift.algorithm.context.AlgoContext

attribute), 17
AdaptiveOrder (class in blueshift.library.algos), 68
after_trading_hours()

built-in function, 8
AlgoCallBack (class in blueshift.api), 53
AlgoMode (class in blueshift.api), 53
analyze()

built-in function, 9
AON (blueshift.protocol.OrderValidity attribute), 45
APIError (class in blueshift.errors), 73
Asset (class in blueshift.assets), 41
AssetClass (class in blueshift.assets), 40
attach_pipeline() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 34
AUTO (blueshift.api.ExecutionMode attribute), 53
auto_arima() (in module blueshift.library.timeseries),

62
average_volume_filter() (in module

blueshift.library.pipelines), 66

B
BACKTEST (blueshift.api.AlgoMode attribute), 53
BadDataError (class in blueshift.errors), 74
before_trading_start()

built-in function, 8
BidAskSlippage (class in blueshift.finance.slippage), 48
blueshift.algorithm.context

module, 15
blueshift.api

module, 53
blueshift.assets

module, 40
blueshift.errors

module, 73
blueshift.library.algos

module, 68
blueshift.library.common

module, 71
blueshift.library.ml

module, 65
blueshift.library.models

module, 64
blueshift.library.pipelines

module, 66
blueshift.library.statistical

module, 59
blueshift.library.technicals

module, 58
blueshift.library.technicals.indicators

module, 56
blueshift.library.timeseries

module, 60
blueshift.protocol

module, 37
blueshift_data.readers.data_portal

module, 18
BOLLINGER_BAND_DIST() (in module

blueshift.library.technicals.indicators), 56
BrokerConnectionError (class in blueshift.errors), 74
BrokerError (class in blueshift.errors), 73
bs_implied_vol() (in module

blueshift.library.models.bs), 65
bs_plain_vanilla_greek() (in module

blueshift.library.models.bs), 65
bs_plain_vanilla_option() (in module

blueshift.library.models.bs), 64
built-in function

after_trading_hours(), 8
analyze(), 9
before_trading_start(), 8
handle_data(), 8
initialize(), 7
on_data(), 9
on_trade(), 10

BUY (blueshift.protocol.OrderSide attribute), 45

C
calculate() (blueshift.finance.commission.CostModel

method), 51
calculate() (blueshift.finance.margin.MarginModel

method), 50

91

Spring Technical Documentation, Release 2.1.0

CALL (blueshift.assets.OptionType attribute), 40
can_trade() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 30
cancel_order() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 29
CANCELLED (blueshift.protocol.OrderStatus attribute), 46
CCY (in module blueshift.api), 53
CLS (blueshift.protocol.OrderValidity attribute), 45
COMPLETE (blueshift.protocol.OrderStatus attribute), 46
CostModel (class in blueshift.finance.commission), 51
cumulative_apply() (in module

blueshift.library.timeseries.transform), 64
current() (blueshift_data.readers.data_portal.DataPortal

method), 18

D
DATA (blueshift.api.AlgoCallBack attribute), 53
date_rules (class in blueshift.api), 12
DAY (blueshift.protocol.OrderValidity attribute), 45
DELIVERY (blueshift.protocol.ProductType attribute), 44
deseasonalize() (in module

blueshift.library.timeseries), 61

E
EMA_XOVER() (in module

blueshift.library.technicals.indicators), 56
endpoints() (in module

blueshift.library.timeseries.transform), 62
EQUITY (blueshift.assets.AssetClass attribute), 40
Equity (class in blueshift.assets), 42
EquityFutures (class in blueshift.assets), 43
EquityIntraday (class in blueshift.assets), 43
EquityMargin (class in blueshift.assets), 43
EquityOption (class in blueshift.assets), 43
estimate_random_forest() (in module

blueshift.library.ml), 65
exclude_assets() (in module

blueshift.library.pipelines), 67
EXECUTION (blueshift.api.AlgoMode attribute), 53
execution_mode (blueshift.algorithm.context.AlgoContext

attribute), 16
ExecutionMode (class in blueshift.api), 53
EXIT (blueshift.library.common.Signal attribute), 71
exposure_margin() (blueshift.finance.margin.MarginModel

method), 50

F
filter_assets() (in module

blueshift.library.pipelines), 66
filter_universe() (in module

blueshift.library.pipelines), 66
filtered_returns_factor() (in module

blueshift.library.pipelines), 67

find_imp_points() (in module
blueshift.library.statistical), 59

find_support_resistance() (in module
blueshift.library.technicals), 58

find_trends() (in module blueshift.library.statistical),
59

FixedBasisPointsSlippage (class in
blueshift.finance.slippage), 49

FixedSlippage (class in blueshift.finance.slippage), 49
FlatMargin (class in blueshift.finance.margin), 50
FOK (blueshift.protocol.OrderValidity attribute), 45
FOREX (blueshift.assets.AssetClass attribute), 40
Forex (class in blueshift.assets), 42
FUTURES (blueshift.assets.InstrumentType attribute), 40

G
get_dated_asset() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 23
get_datetime() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 35
get_hmm_state() (in module

blueshift.library.statistical), 60
get_level() (blueshift.library.common.Line method),

72
get_open_orders() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 29
get_open_positions()

(blueshift.algorithm.algorithm.TradingAlgorithm
method), 29

get_order() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 29

GTC (blueshift.protocol.OrderValidity attribute), 45

H
handle_data()

built-in function, 8
hedge_ratio() (in module blueshift.library.statistical),

60
HEIKIN_ASHI() (in module

blueshift.library.technicals.indicators), 57
history() (blueshift_data.readers.data_portal.DataPortal

method), 19
HistoryWindowStartsBeforeData (class in

blueshift.errors), 74

I
IcebergOrder (class in blueshift.library.algos), 70
ICHIMOKU_CLOUD() (in module

blueshift.library.technicals.indicators), 57
if_closed() (blueshift.protocol.Position method), 48
IllegalRequest (class in blueshift.errors), 73
initialize()

built-in function, 7

92 Index

Spring Technical Documentation, Release 2.1.0

InstrumentType (class in blueshift.assets), 40
InsufficientFund (class in blueshift.errors), 74
intercept (blueshift.library.common.Line attribute), 72
INTRADAY (blueshift.protocol.ProductType attribute), 44
intraday_seasonality_func() (in module

blueshift.library.timeseries), 60
IOC (blueshift.protocol.OrderValidity attribute), 45
is_breakout() (blueshift.library.common.Line

method), 72
is_buy() (blueshift.protocol.Order method), 47
is_open() (blueshift.protocol.Order method), 46

L
LIMIT (blueshift.protocol.OrderType attribute), 45
LimitIfTouched (class in blueshift.library.algos), 69
line (blueshift.library.common.Line attribute), 72
Line (class in blueshift.library.common), 72
LineType (class in blueshift.library.common), 71
LIVE (blueshift.api.AlgoMode attribute), 53
LONG (blueshift.protocol.PositionSide attribute), 47
LONG_ENTRY (blueshift.library.common.Signal attribute),

71
LONG_ENTRY_STRONG (blueshift.library.common.Signal

attribute), 71
LONG_EXIT (blueshift.library.common.Signal attribute),

71

M
MA_XOVER() (in module

blueshift.library.technicals.indicators), 56
MARGIN (blueshift.assets.InstrumentType attribute), 40
MARGIN (blueshift.protocol.ProductType attribute), 44
MarginModel (class in blueshift.finance.margin), 49
MARKET (blueshift.protocol.OrderType attribute), 44
MarketData (class in blueshift.assets), 41
MarketIfTouched (class in blueshift.library.algos), 69
mode (blueshift.algorithm.context.AlgoContext attribute),

16
module

blueshift.algorithm.context, 15
blueshift.api, 53
blueshift.assets, 40
blueshift.errors, 73
blueshift.library.algos, 68
blueshift.library.common, 71
blueshift.library.ml, 65
blueshift.library.models, 64
blueshift.library.pipelines, 66
blueshift.library.statistical, 59
blueshift.library.technicals, 58
blueshift.library.technicals.indicators,

56
blueshift.library.timeseries, 60
blueshift.protocol, 37

blueshift_data.readers.data_portal, 18

N
name (blueshift.algorithm.context.AlgoContext attribute),

16
NO_SIGNAL (blueshift.library.common.Signal attribute),

71
NoCommission (class in blueshift.finance.commission),

52
NoDataForAsset (class in blueshift.errors), 74
NoMargin (class in blueshift.finance.margin), 50
NoSlippage (class in blueshift.finance.slippage), 48
NoSuchPipeline (class in blueshift.errors), 74

O
on_data()

built-in function, 9
on_trade()

built-in function, 10
ONECLICK (blueshift.api.ExecutionMode attribute), 53
OnlineAutoARIMA (class in blueshift.library.timeseries),

61
OPEN (blueshift.protocol.OrderStatus attribute), 46
open_orders (blueshift.algorithm.context.AlgoContext

attribute), 16
OPG (blueshift.protocol.OrderValidity attribute), 45
OPT (blueshift.assets.InstrumentType attribute), 40
OptionType (class in blueshift.assets), 40
Order (class in blueshift.protocol), 46
order() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 24
order_percent() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 26
order_target() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 26
order_target_percent()

(blueshift.algorithm.algorithm.TradingAlgorithm
method), 27

order_target_value()
(blueshift.algorithm.algorithm.TradingAlgorithm
method), 27

order_value() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 25

orders (blueshift.algorithm.context.AlgoContext at-
tribute), 16

OrderSide (class in blueshift.protocol), 45
OrderStatus (class in blueshift.protocol), 46
OrderType (class in blueshift.protocol), 44
OrderValidity (class in blueshift.protocol), 45

P
PAPER (blueshift.api.AlgoMode attribute), 53
PassiveAggressiveOrder (class in

blueshift.library.algos), 68

Index 93

Spring Technical Documentation, Release 2.1.0

Pattern (class in blueshift.library.common), 72
PerDollar (class in blueshift.finance.commission), 52
period_apply() (in module

blueshift.library.timeseries.transform), 63
PerOrder (class in blueshift.finance.commission), 52
PerShare (class in blueshift.finance.commission), 52
PipCost (class in blueshift.finance.commission), 52
pipeline_output() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 34
plot() (blueshift.library.common.Line method), 72
plot() (blueshift.library.common.Pattern method), 72
pnls (blueshift.algorithm.context.AlgoContext attribute),

16
portfolio (blueshift.algorithm.context.AlgoContext at-

tribute), 17
Position (class in blueshift.protocol), 47
PositionSide (class in blueshift.protocol), 47
predict_random_forest() (in module

blueshift.library.ml), 65
ProductType (class in blueshift.protocol), 44
PUT (blueshift.assets.OptionType attribute), 40

R
record() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 35
record_vars (blueshift.algorithm.context.AlgoContext

attribute), 16
RegTMargin (class in blueshift.finance.margin), 51
REJECTED (blueshift.protocol.OrderStatus attribute), 46
REL (blueshift.assets.StrikeType attribute), 40
remove_stoploss() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 31
remove_takeprofit()

(blueshift.algorithm.algorithm.TradingAlgorithm
method), 31

resample() (in module
blueshift.library.timeseries.transform), 62

reseasonalize() (in module
blueshift.library.timeseries), 61

RESISTANCE (blueshift.library.common.LineType at-
tribute), 71

returns_factor() (in module
blueshift.library.pipelines), 67

rollapply() (in module
blueshift.library.timeseries.transform), 63

rollcost() (blueshift.finance.commission.CostModel
method), 52

S
schedule_function()

(blueshift.algorithm.algorithm.TradingAlgorithm
method), 11

schedule_later() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 11

schedule_once() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 10

score (blueshift.library.common.Line attribute), 72
search_chart_patterns() (in module

blueshift.library.technicals), 58
select_universe() (in module

blueshift.library.pipelines), 66
SELL (blueshift.protocol.OrderSide attribute), 45
ServerError (class in blueshift.errors), 73
set_account_currency()

(blueshift.algorithm.algorithm.TradingAlgorithm
method), 36

set_algo_parameters()
(blueshift.algorithm.algorithm.TradingAlgorithm
method), 36

set_allowed_list() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 32

set_benchmark() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 35

set_commission() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 35

set_cooloff_period()
(blueshift.algorithm.algorithm.TradingAlgorithm
method), 36

set_do_not_order_list()
(blueshift.algorithm.algorithm.TradingAlgorithm
method), 32

set_long_only() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 32

set_margin() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 35

set_max_daily_size()
(blueshift.algorithm.algorithm.TradingAlgorithm
method), 32

set_max_exposure() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 33

set_max_leverage() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 33

set_max_order_count()
(blueshift.algorithm.algorithm.TradingAlgorithm
method), 33

set_max_order_size()
(blueshift.algorithm.algorithm.TradingAlgorithm
method), 33

set_max_position_size()
(blueshift.algorithm.algorithm.TradingAlgorithm
method), 33

set_slippage() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 34

set_stoploss() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 31

set_takeprofit() (blueshift.algorithm.algorithm.TradingAlgorithm
method), 31

SHORT (blueshift.protocol.PositionSide attribute), 47

94 Index

Spring Technical Documentation, Release 2.1.0

SHORT_ENTRY (blueshift.library.common.Signal at-
tribute), 71

SHORT_ENTRY_STRONG (blueshift.library.common.Signal
attribute), 71

SHORT_EXIT (blueshift.library.common.Signal attribute),
71

Signal (class in blueshift.library.common), 71
simulate() (blueshift.finance.slippage.SlippageModel

method), 48
SlippageModel (class in blueshift.finance.slippage), 48
slope (blueshift.library.common.Line attribute), 72
split() (in module blueshift.library.timeseries.transform),

63
SPOT (blueshift.assets.InstrumentType attribute), 40
square_off() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 30
STOPLOSS (blueshift.protocol.OrderType attribute), 45
STOPLOSS_MARKET (blueshift.protocol.OrderType at-

tribute), 45
StrikeType (class in blueshift.assets), 40
SUPPORT (blueshift.library.common.LineType attribute),

71
symbol() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 23
SymbolNotFound (class in blueshift.errors), 73
symbols() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 23

T
technical_factor() (in module

blueshift.library.pipelines), 68
terminate() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 33
time_rules (class in blueshift.api), 12
TRADE (blueshift.api.AlgoCallBack attribute), 53
trading_calendar (blueshift.algorithm.context.AlgoContext

attribute), 16
TradingControlError (class in blueshift.errors), 74
TREND (blueshift.library.common.LineType attribute), 71
TREND_SET() (in module

blueshift.library.technicals.indicators), 57
TREND_STALL() (in module

blueshift.library.technicals.indicators), 57
type (blueshift.library.common.Line attribute), 72

U
update_order() (blueshift.algorithm.algorithm.TradingAlgorithm

method), 28

V
ValidationError (class in blueshift.errors), 73
VarMargin (class in blueshift.finance.margin), 51
VolumeSlippage (class in blueshift.finance.slippage), 48

Z
z_score() (in module blueshift.library.statistical), 60

Index 95

	Introduction
	What is Spring?
	What it is NOT
	How Spring Works
	Platform APIs Overview

	Changelog
	Release 2.1.0 (Jan 16, 2022)
	Breaking Changes (2.1.0)
	New Features (2.1.0)
	Bug Fixes and Improvements (2.1.0)

	Release 2.0.0 (Nov 2, 2021)
	Breaking Changes
	Changes in Blueshift 2.0.0
	Extended and Updated Asset Universes
	More Realistic Simulation Behaviour
	Changes in Ordering function
	Upgraded Data Interface

	Event Callbacks in Strategy
	Main Callback Functions
	Initialize
	Before Trading Start
	Handle Data
	After Trading Hours
	Analyze

	Trade and Data Callbacks
	On Data
	On Trade

	Scheduled Callback Functions
	Schedule Once
	Schedule Later
	Schedule Function
	Date Rules
	Time Rules

	Scheduling Examples
	Repetitive Logic with Scheduling
	Responsive Strategy with Scheduling

	Fetching Price Data, Tracking Algo State
	Context Object
	Context Attributes
	Portfolio and Account

	Data Object
	Fetching Current Data
	Querying Historical Data

	Placing Orders and Other API Functions
	Assets Fetching APIs
	Trading API functions
	Order Placing APIs
	Place Order
	Automatic Order Sizing
	Targeting Orders
	Advanced Algo Orders

	Order management APIs
	Update Order
	Cancel Order
	Fetch Open Orders
	Fetch Open Positions
	Get Order by Order ID
	Check If Tradable
	Square Off Position

	Stoploss and Take-profit
	Add or Remove Stoploss
	Add or Remove Take-profit Target

	Risk Management APIs
	Pipeline APIs
	Pipeline in live trading

	Backtest Model Selection APIs
	Miscellaneous API functions

	Objects, Models and Constants
	Trading Calendar
	Assets
	Asset Symbology
	Dated and Rolling Futures and Options

	Asset Related Constants
	AssetClass
	InstrumentType
	OptionType
	StrikeType

	Types of Asset
	Market Data
	Asset
	Forex
	Equity
	EquityMargin
	EquityIntraday
	EquityFutures
	EquityOption

	Data and Simulation Models for Assets

	Orders
	ProductType
	OrderType
	OrderValidity
	OrderSide
	OrderStatus
	Order

	Positions
	PositionSide
	Position

	Simulation Models
	Slippage Models
	Margin Models
	Commissions and Cost Models

	Miscellaneous Constants
	Currency
	Algo Modes and Other Constants

	Built-in Library
	Technical Indicators
	Additional Indicators

	Technical patterns
	Statistical Functions
	Timeseries Functions and Models
	Statstical and Pricing Models
	Machine Learning Functions
	Pipeline Functions
	Execution Algorithms
	Library Objects

	Errors and Exceptions
	Error Handling in Strategy

	How-Tos and Examples
	How to code a trading strategy on Spring
	What is the Python support on Spring
	How to create and use variables
	How to fetch assets in strategy code
	Fetching Equity Futures instruments
	Fetching Equity Options instruments

	How to place orders
	How to fetch price data for signal generation
	How to write strategy code
	Strategy that trades periodically
	Strategy that trades conditionally

	How to check order status
	How to check open positions
	How to use stoploss and take-profit
	How to parameterise my strategy
	Good practices to follow for strategy building
	Things to avoid while writing a strategy

	Indices and tables
	Python Module Index
	Index

