Handbook for Formulas

List of formulas for Level 1 CFA® Program
TIME VALUE OF MONEY

<table>
<thead>
<tr>
<th></th>
<th>Equation/Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nominal interest rate = real risk-free rate + expected inflation rate</td>
</tr>
<tr>
<td>2</td>
<td>Required interest rate on security = nominal risk-free rate + default risk premium + liquidity premium + maturity risk premium</td>
</tr>
</tbody>
</table>
| 3 | Effective Annual Return (EAR) = \(\text{EAR} = (1 + \text{periodic rate})^m - 1 \)
 Periodic rate = stated annual rate/m
 M = number of compounding periods per year |
| 4 | \(\text{FV} = \text{PV}(1 + \frac{I/Y}{N})^N \)
 \(\frac{\text{PV}}{(1 + \frac{I/Y}{N})^N} \)
 \(\text{FV} = \text{future value} \)
 \(\text{PV} = \text{Present value} \)
 \(I/Y = \text{Rate of return per compounding period} \)
 \(N = \text{Number of compounding periods} \) |
| 5 | \(\text{PV perpetuity} = \frac{\text{PMT}}{(I/Y)} \)
 \(\text{PMT} = \text{Fixed periodic cash flow} \) |

DISCOUNTED CASH FLOW APPLICATION

<table>
<thead>
<tr>
<th></th>
<th>Equation/Formula</th>
</tr>
</thead>
</table>
| 6 | \(\text{NPV} = \sum \frac{\text{CF}}{(1 + r)^t} \)
 \(\text{CF} = \text{Expected cash flow} \)
 \(r = \text{Discount rate} \) |
| 7 | \(\text{IRR} = \text{CF}_0 + \frac{\text{CF}_1}{(1 + \text{IRR})} + \frac{\text{CF}_2}{(1 + \text{IRR})^2} + \frac{\text{CF}_3}{(1 + \text{IRR})^3} \)
 \(\text{IRR} = \text{Internal rate of return.} \) |
| 8 | \(\text{HPR} = \frac{\text{Ending Value} - \text{Beginning Value}}{\text{Beginning Value}} \)
 \(\text{HPR} = \text{Holding period return} \) |
| 9 | \(\text{RBD} = \frac{\text{D/F}}{360/t} \)
 \(\text{RBD} = \text{Annualised yield on a bank discount basis} \)
 \(\text{D} = \text{Dollar discount} = \text{purchase price - face value} \)
 \(\text{F} = \text{Face value} \)
 \(t = \text{Number of days until maturity} \)
 360 = Bank convention of number of days in a year |
| 10| \(\text{Effective Annual Yield (EAY)} = (1 + \text{HPY})^{365/t} - 1 \)
 \(\text{HPY} = \text{Holding period yield} \) |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 11 | RMM = \(\frac{360}{\text{days}^{\times} \text{HPY}} \)
RMM = Money market yield |
| 12 | Bond equivalent yield = \(\{(1 + \text{effective annual yield})^{\frac{1}{2}} - 1\} \times 2 \) |
| 13 | Geometric Mean = \(\{(1 + R_1)(1 + R_2)\ldots(1 + R_n)\}^{\frac{1}{n}} \)
Geometric mean return is also known as compound annual rate of return |
| 14 | Harmonic Mean = \(\frac{N}{\sum(1/x)} \) |
| 15 | Position of observation at a given percentile
\(L_y = (n + 1) \times \frac{y}{100} \) |
| 16 | Range = Maximum Value - Minimum Value |
| 17 | Mean Absolute Deviation (MAD) = \(\frac{(\sum|X_i - \bar{X}|)}{n} \) |
| 18 | Population Variance
\(\sigma^2 = \frac{(\sum(X_i - \mu)^2)}{N} \) |
| 19 | Standard Deviation
\(\sigma = \text{square root of variance} \) |
| 20 | Sample Variance
\(\sigma^2 = \frac{(\sum(X_i - \mu)^2)}{N-1} \) |
| 21 | Chebyshev’s Inequality
Percentage of observations that lie within \(k \) standard deviations of the mean is at least = \(1 - \frac{1}{k^2} \) |
| 22 | Coefficient of Variation
\(CV = \frac{(\text{standard deviation of } x)}{(\text{average value of } x)} \) |
| 23 | Sharpe Ratio = \(\frac{(R_p - R_{FR})}{\sigma_p} \)
\(R_p = \text{Portfolio Return} \)
\(R_{FR} = \text{Risk Free Rate} \)
\(\sigma_p = \text{standard deviation of portfolio return} \) |
| 24 | Sample Skewness (Sk) = \(\frac{(\sum(X_i - \bar{X})^3)}{s^3} \)
\(s = \text{sample standard deviation} \) |
| 25 | Sample Skewness (Sk) = \(\frac{(\sum(X_i - \bar{X})^4)}{s^4} \) |
| 26 | Excess Kurtosis = Sample Kurtosis - 3 |
PROBABILITY CONCEPTS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **27** | Multiplication Rule Of Probability,
\[P(AB) = P(A/B) \times P(B) \] |
| **28** | Addition Rule Of Probability,
\[P(A \text{ or } B) = P(A) + P(B) - P(AB) \] |
| **29** | Total Probability Rule (Used to determine unconditional probability of an event)
\[P(A) = P(A/B_1)P(B_1) + P(A/B_2)P(B_2) + \ldots \ldots + P(A/B_N)P(B_N) \] |
| **30** | Expected value of random variable = weighted average of possible outcomes,
Weights = probabilities that the outcome will occur |
| **31** | Covariance
\[\text{Cov}(R_i, R_j) = E\{(R_i - E(R_i))(R_j - E(R_j))\} \]
\[\text{Cov}(R_i, R_j) = \text{Corr}(R_i, R_j) \frac{\sigma(R_i) \sigma(R_j)}{\sigma(R_i) \sigma(R_j)} \] |
| **32** | Correlation Coefficient
\[\text{Corr}(R_i, R_j) = \frac{E(\{R_i - E(R_i)\}(R_j - E(R_j)))}{\sigma(R_i) \sigma(R_j)} \] |
| **33** | Weight of asset in portfolio,
\[w = \text{market value of investment in asset } i / \text{market value of the portfolio} \] |
| **34** | Portfolio Expected Value
\[E(R_p) = w_1E(R_1) + w_2E(R_2) + \ldots \ldots + w_nE(R_n) \] |
| **35** | Variance of 2 Asset Portfolio |
| **36** | Variance of 3 Asset Portfolio |
| **37** | Bayes Formula,
\[\text{Updated Probability} = \frac{\text{Probability of new information for a given event} / \text{unconditional probability of new event}}{\text{prior probability of event}} \] |
| **38** | Factorial
\[n! = n \times (n-1) \times (n-2) \times \ldots \times 1 \]
0! = 1 |
| **39** | Labelling,
\[n! / (n_1)! \times (n_2)! \times \ldots \times (n_n)! \] |
| **40** | Combination,
\[n \text{ C}_r = n! / (n-r)!r! \] |
| **41** | Permutation,
\[n! / (n-r)! \] |
| **42** | To standardize a normal variable,
\[z = \frac{\text{Observation} - \text{Population Mean}}{\text{Standard Deviation}} \] |

COMMON PROBABILITY DISTRIBUTIONS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **42** | To standardize a normal variable,
\[z = \frac{\text{Observation} - \text{Population Mean}}{\text{Standard Deviation}} \] |
Roy’s safety first criteria,
\[SFR = \frac{([E(R_p) - R_l])}{\sigma_p} \]
Choose the portfolio with largest SFR

Continuously compounded rate of return,
\[R_{cc} = \ln(1 + HPR) \]

SAMPLING AND ESTIMATION

Standard Error of sample Mean,
\[\sigma_x = \frac{\sigma}{\sqrt{n}} \]
\[\sigma = \text{Standard deviation of population} \]
\[n = \text{Size of the sample} \]

t-distribution to construct a confidence interval,
When variance is unknown,
\[x = t_{\alpha/2} \frac{s}{\sqrt{n}} \]
When variance is known,
\[x = t_{\alpha/2} \frac{\sigma}{\sqrt{n}} \]
\[x = \text{Point estimate of population mean} \]
\[t_{\alpha/2} = \text{The t-reliability factor} \]
\[s/\sqrt{n} = \text{Standard error of sample mean} \]

TEST STATISTIC

Test Statistic
\[\frac{\text{(Sample Mean - Hypothesized Mean)}}{\text{(Standard Error of Sample Mean)}} \]

t-statistic
When population variance is unknown,
\[T_{n-1} = \frac{(x - \mu)}{(s/\sqrt{n})} \]
When population variance is known,
\[T_{n-1} = \frac{(x - \mu)}{(\sigma/\sqrt{n})} \]

Chi-square test
\[X^2 = \frac{(n-1)s^2}{\sigma^2} \]

F-distribution test,
\[F = \frac{s_{12}}{s_{22}} \]

TECHNICAL ANALYSIS

Arms Index or Short Term Trading Index,
\[TRIN = \frac{(\text{Number of advancing Issues / Number of declining issues})}{(\text{Volume of advancing issues / Volume of declining issues})} \]
DEMAND AND SUPPLY ANALYSIS: INTRODUCTION

<table>
<thead>
<tr>
<th>Page</th>
<th>Formula/Definition</th>
</tr>
</thead>
</table>
| 52 | Demand function for good X,
\(Q_{dx} = f(P_x, I, P_y, \ldots) \)
\(P_x = \text{Price of good } X, \ I = \text{Some measure of average income per year}, \ P_y = \text{Prices of related goods} \) |
| 53 | Price Elasticity of Demand = \(\frac{\% \Delta \text{Quantity Demanded}}{\% \Delta \text{Price}} \)
\(\Delta = \text{change} \) |
| 54 | Cross Price Elasticity = \(\frac{\% \Delta \text{Quantity Demanded}}{\% \Delta \text{Price Of Related Goods}} \)
\(\Delta = \text{change} \) |
| 55 | Income Elasticity = \(\frac{\% \Delta \text{Quantity Demanded}}{\% \Delta \text{in Income}} \)
\(\Delta = \text{change} \) |

DEMAND AND SUPPLY ANALYSIS: THE FIRM

<table>
<thead>
<tr>
<th>Page</th>
<th>Formula/Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Accounting profit = total revenue - total accounting costs</td>
</tr>
</tbody>
</table>
| 57 | Economic profit = accounting profit - implicit opportunity costs
Or
Economic profit = total revenue - total economic costs |
| 58 | Normal profit,
Economic profit = accounting profit - normal profit = 0
Normal profit is the accounting profit that makes economic profit equal to zero |
| 59 | Marginal Cost,
\(\text{MC} = \text{change in total cost/change in output} \) |

AGGREGATE OUTPUT, PRICES AND ECONOMIC GROWTH

<table>
<thead>
<tr>
<th>Page</th>
<th>Formula/Definition</th>
</tr>
</thead>
</table>
| 60 | Nominal GDP = \(\sum P_i t Q_i t \)
\(P_i t = \text{Price of good i in year t}, \ Q_i t = \text{Quantity of good I produced in year t} \) |
| 61 | GDP deflator = \(\frac{\text{nominal GDP/value of year t output at year t}}{100} \) |
| 62 | Per Capita Real GDP = GDP/population |
| 63 | GDP by expenditure approach,
\(\text{GDP} = C + I + G + (X-M) \)
\(C = \text{Consumption spending}, \ I = \text{Business investment}, \ G = \text{Government purchases}, \ X = \text{Exports}, \ M = \text{Imports} \) |
| 64 | GDP by Income Approach,
\(\text{GDP} = \text{national income} + \text{capital consumption allowance} + \text{statistical discrepancy} \) |
| 65 | National Income = compensation of employees (wages and benefits)
+ corporate and government enterprise profits before taxes
+ Interest Income
+ Unincorporated business net income (business owner’s income)
+ rent
+ indirect business taxes-subsidies |
| 66 | Personal Income = national Income + transfer payments to households - indirect business taxes - corporate income taxes - undistributed corporate profits |
| 67 | Personal disposable income = personal income - personal taxes |
| 68 | Quantity Theory Of Money, \(MV = PY \)
M = Money Supply,
V = Velocity of money in transactions,
P = Price level
Y = Real GDP |
| 69 | Recessionary Gap or Output Gap = Real GDP - Full Employment GDP |
| 70 | Potential GDP = aggregate hours worked * labour productivity
In terms of economic growth,
Growth in potential GDP = growth in labour force + growth in labour productivity |
| 71 | Production Function,
\(Y = A \cdot f(L,K) \)
Y = Aggregate economic output,
L = Size of labour force,
K = Amount of capital available,
A = Total factor productivity |
| **UNDERSTANDING BUSINESS CYCLES** |
| 72 | CPI = \((\text{Cost of basket at current prices}/\text{cost of basket at base period prices}) \times 100 \) |
| 73 | Total amount of money that can be created,
Money created = new deposit/reserve requirement |
| 74 | Money Multiplier = \(1/\text{Reserve Requirement} \) |
| 75 | Fisher Effect,
\(R_{\text{nom}} = R_{\text{real}} + E(I) + RP \)
\(R_{\text{nom}} \) = Nominal interest rate,
\(R_{\text{real}} \) = Real Interest rate
RP = Risk premium for uncertainty |
| 76 | Neutral Interest Rate = Real trend rate of economic growth + inflation target |
| 77 | Fiscal Multiplier = \(1/\{1-MPC(1-t)\}] \) |
| 78 | Relation between trade deficit, saving and domestic investment,
Exports - imports = private savings + government savings + domestic investment |
| **CURRENCY EXCHANGE RATES** |
| 79 | Real Exchange Rate = Nominal Exchange Rate \(\frac{d/f}{(\text{CPI foreign})} \times \frac{(\text{CPI domestic})}{(\text{CPI domestic})} \) |
Interest Rate Parity,

\[
\frac{\text{forward}}{\text{spot}} = \frac{(1+\text{interest rate (domestic)})}{(1+\text{interest rate (foreign)})}
\]

Accounting Equation, (Balance Sheet)

\[\text{Assets} = \text{liabilities} + \text{equity} + \text{contributed capital} + \text{ending retained earnings}\]

\[\text{Assets} = \text{liabilities} + \text{contributed capital} + \text{beginning retained earnings} + \text{revenue} - \text{expenses} - \text{dividends}\]

Income statement equation,

\[\text{Net income} = \text{revenues} - \text{expenses}\]

Straight line depreciation expense

\[\text{Straight line depreciation expense} = \frac{(\text{cost} - \text{residual value})}{\text{useful life}}\]

Accelerated depreciation- double declining balance method

\[\text{DDB depreciation} = \frac{2}{\text{useful life}}(\text{cost} - \text{accumulated depreciation})\]

Basic EPS

\[\text{Basic EPS} = \frac{(\text{net income} - \text{preferred dividends})}{(\text{weighted average number of common shares outstanding})}\]

Diluted EPS

\[\text{Diluted EPS} = \frac{(\text{Adjusted income for common shareholders})}{(\text{weighted average common and potential common shares outstanding})}\]

\[\text{Diluted EPS} = \frac{([\text{Net income} - \text{preferred dividends}] + [\text{convertible preferred dividends}] + [\text{convertible debt interest}(1-\text{tax rate})])}{([\text{Weighted average shares}] + [\text{shares from conversion of converted preferred shares}] + [\text{shares from conversion of debt}] + [\text{shares issuable from stock options}])}\]

Free Cash flow to firm,

\[\text{FCFF} = \text{NI} + \text{NCC} + \text{Interest}(1-\text{Tax Rate}) - \text{FC Inv} - \text{WC Inv}\]

\[\text{FCFF} = \text{CFO} + \text{Interest}(1-\text{Tax Rate}) - \text{FC Inv}\]

\[\text{NI} = \text{Net income}\]

\[\text{NCC} = \text{Non cash charges}\]

\[\text{FC Inv} = \text{Fixed capital investment}\]

\[\text{WC Inv} = \text{Working Capital Investment}\]

Free cash flow to equity,

\[\text{FCFE} = \text{CFO} - \text{FC Inv} + \text{net borrowing}\]

\[\text{Net borrowing} = \text{deb ent issued} - \text{debt repaid}\]
| | 89 Performance Ratio:
Cash flow to revenue = CFO/Net Revenue
CFO = Cash flow from operations
90 Performance Ratio:
Cash return on asset ratio = CFO/Average total assets
91 Performance Ratio:
Cash return on equity ratio = CFO/Average total equity
92 Performance Ratio:
Cash to income ratio: CFO/Operating Income
93 Cash flow per share = (CFO-Preferred Dividends) / (Weighted Average Number Of Common Shares)
94 Coverage Ratio:
Debt coverage = CFO / (Total Debt)
95 Coverage Ratio:
Interest coverage ratio: (CFO + interest paid + taxes paid) / (interest paid)
If interest paid is classified as a financing activity under IFRS, no interest adjustment is necessary
96 Reinvestment Ratio = CFO / (Cash paid for long term assets)
97 Debt payment Ratio = CFCFO / (Cash long term debt repayment)
98 Dividend Payment Ratio = CFO / (Dividends paid)
99 Investing and Financing Ratio = CFO / (Cash outflow from investing and financing activities)
| | FINANCIAL ANALYSIS TECHNIQUES
| | ACTIVITY RATIOS:
100 Receivables Turnover = net annual sales /average receivables
101 Days of sales outstanding = 365 / (Receivables turnover)
102 Inventory Turnover = (Cost of goods sold) / (Average inventory)
103 Days of inventory in hand = 365 / (Inventory turnover) |
104	Payables turnover = \(\frac{\text{Purchases}}{\text{Average trade payables}} \)
105	Number of days of payables = \(\frac{365}{\text{Payable turnover}} \)
106	Total asset turnover = \(\frac{\text{Revenue}}{\text{Average total assets}} \)
107	Fixed asset turnover = \(\frac{\text{Revenue}}{\text{Average net fixed assets}} \)
108	Working capital turnover = \(\frac{\text{Revenue}}{\text{Average working capital}} \)
109	Current Ratios = \(\frac{\text{(Current Assets)}}{\text{Current Liabilities}} \)
110	Quick Ratio = \(\frac{\text{(Cash+Marketable Securities+Receivables)}}{\text{(Current Liabilities)}} \)
111	Cash Ratio = \(\frac{\text{(Cash+Marketable Securities)}}{\text{(Current Liabilities)}} \)
112	Defensive Interval = \(\frac{\text{(Cash+Marketable Securities+Receivables)}}{\text{(Average Daily Expenditures)}} \)
113	Cash Conversion Cycle = \(\text{(Days sales outstanding)} + \text{(days on inventory on hand)} - \text{(number of days of payables)} \)
114	Debt to equity ratio = \(\frac{\text{(Total debt)}}{\text{Total Shareholders Equity}} \)
115	Debt To Capital = \(\frac{\text{(Total debt)}}{\text{(Total Debt+Total Shareholders Equity)}} \)
116	Debt To Assets = \(\frac{\text{(Total Debt)}}{\text{(Total Assets)}} \)
117	Financial Leverage = \(\frac{\text{(Average Total Assets)}}{\text{(Average Total Equity)}} \)
118	Interest Coverage Ratio = \(\frac{\text{(Earnings Before Interest and taxes)}}{\text{(Interest payments)}} \)
119	Fixed Charge Coverage = \(\frac{\text{(Earnings Before Interest & Taxes + Lease Payments)}}{\text{(Interest payments + Lease payments)}} \)
120	Net profit margin = \(\frac{(\text{Net Income})}{\text{Revenue}} \)
Net income = earnings after taxes but before dividends	
121	Gross Profit Margin = \(\frac{\text{Gross profit}}{\text{Revenue}} \)
Gross profit = Net Sales - COGS	
122	Operating profit margin = \(\frac{\text{(Operating Income (EBIT))}}{\text{Revenue}} \)
123	Pretax margin = \(\frac{\text{EBT}}{\text{Revenue}} \)
124	Return on assets (ROA) = \(\frac{(\text{Net Income})}{\text{(Average Total Assets)}} \)
125	Operating return on assets = \(\frac{(\text{Operating Income})}{\text{(Average Total Assets)}} \)
126	Return on Total Capital = \(\frac{\text{EBIT}}{\text{(Average Total Capital)}} \)
127	Return On Equity = \(\frac{(\text{Net Income})}{\text{(Average Total Equity)}} \)
Or	
Return On Equity = \(\frac{(\text{Net Income})}{\text{Revenue}} * \frac{\text{Revenue}}{\text{Equity}} \)	
= Net Profit Margin * Equity Turnover	
Return On Equity By Du Pont Equation,	
Return On Equity = \(\frac{(\text{Net Income})}{\text{Sales}} * \frac{\text{(Sales)}}{\text{Assets}} * \frac{\text{(Assets)}}{\text{Equity}} \)	
= Net Profit Margin * Asset Turnover * Leverage Ratio	
ROE By Extended Dupont Equation,	
ROE = \(\frac{(\text{Net Income})}{\text{EBT}} * \frac{\text{EBT}}{\text{Revenue}} * \frac{\text{Revenue}}{\text{(Total Assets)}} * \frac{\text{(Total Assets)}}{\text{(Total Equity)}} \)	
= Tax Burden * Interest Burden * EBIT Margin * Asset turnover * financial leverage	
128	Return on common equity = \(\frac{(\text{Net Income-Preferred Dividends})}{\text{(Average Common Equity)}} \)
129	Sustainable growth rate = RR*ROE
RR = Retention rate
= 1 - dividend payout |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>Coefficient of variation sales = (\frac{\text{Standard deviation of operating income}}{\text{Mean sales}})</td>
</tr>
<tr>
<td>131</td>
<td>CV Operating Income = (\frac{\text{Standard deviation of operating income}}{\text{Mean operating income}})</td>
</tr>
<tr>
<td>132</td>
<td>CV Net Income = (\frac{\text{Standard deviation of net income}}{\text{Mean net income}})</td>
</tr>
</tbody>
</table>

INVENTORIES

133 COGS = beginning inventory + purchases - ending inventory

LONG LIVED ASSETS

134 Depreciation methods,
 i) straight line and ii) ddb covered earlier.
 ii) units of production depreciation = \(\frac{\text{(Original cost-salvage value)}}{\text{(life in output units)}} \times \text{Output units in the period} \)

INCOME TAXES

135 Effective tax rate = \(\frac{\text{(Income tax expense)}}{\text{(Pretax income)}} \)

136 Income tax expense = taxes payable + \(\Delta \text{DTL-\(\Delta \)DTA} \)

 DTL = Deferred tax liability

 DTA = Deferred tax asset

CAPITAL BUDGETING

137 Profitability Index (PI) = \(\frac{\text{(PV Of future cash flows)}}{\text{CF0}} \)

\[= 1 + \frac{\text{NPV}}{\text{CF0}} \]

COST OF CAPITAL

138 WACC = \((\text{wd})\text{kd}(1-t)+ (\text{wps})\text{kps}+(\text{wcc})\text{Kcc} \)

 Wd = percentage of debt in capital structure.

 Wps = percentage of preferred stock in the capital structure.

 Wcc = percentage of common stock in the capital structure

139 After tax cost of debt = \(\text{kd}(1-t) \)

140 Cost of preferred stock \((k_{ps}) \)

\[K_{ps} = \frac{D_{ps}}{p} \]
Capital asset pricing model (CAPM)

\[K_{ce} = RFR + \beta [E(Rm) - RFR] \]

- **Kce**: Cost of equity capital
- **RFR**: Risk free rate
- **E(Rm)**: Expected return on market.

Dividend discount model

\[
P_0 = \frac{D_1}{(k-g)}
\]

- **D1**: Next year dividend.
- **k**: Required rate of return on common equity.
- **g**: Firm’s expected constant growth rate.

Bond yield plus risk premium approach

\[K_{be} = \text{bond yield} + \text{risk premium} \]

Asset Beta

\[B_{Asset} = \beta_{Equity} \left(\frac{1}{1+D/E} \right) \]

- **D/E**: Comparable company’s debt to equity ratio

Project Beta

\[B_{Project} = B_{Asset} \left(1 + (1-t) \frac{D}{E} \right) \]

Revised CAPM using country risk premium

\[K_{be} = R_f + \beta [E(R_m)' - RFR + CRP] \]

- **CRP**: Country risk premium

Break Points

<table>
<thead>
<tr>
<th>Break Points</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Amount Of Capital at which the components cost of capital changes)</td>
<td>(\frac{(Amount \text{ Of Capital at which the components cost of capital changes})}{(weight \text{ of the he component in the capital structure))})</td>
</tr>
</tbody>
</table>
MEASURES OF LEVERAGE

Degree of operating leverage,
\[
\text{DOL} = \frac{\text{(Percentage change in EBIT)}}{\text{(Percentage change in sales)}}
\]

DOL for a particular level of units,
\[
\text{DOL} = \frac{Q(P-V)}{(Q(P-V)-F)} = \frac{(S-TVC)}{(S-TVC-F)}
\]

- \(Q\) = Quantity of units sold
- \(P\) = Price per unit
- \(V\) = Variable cost per unit
- \(F\) = Fixed costs
- \(S\) = Sales
- \(TVC\) = Total variable costs

Degree of financial leverage,
\[
\text{DFL} = \frac{\text{(Percentage change in EPS)}}{\text{(Percentage change in EBIT)}}
\]

DFL for a particular level of operating units,
\[
\text{DFL} = \frac{\text{EBIT}}{(\text{EBIT-Interest})}
\]

Degree Of Total Leverage
\[
\text{DTL} = \text{DOL} + \text{DFL}
\]
\[
\text{DTL} = \frac{\text{(% change in EBIT)}}{\text{(% change in Sales)}} * \frac{\text{(% change in EPS)}}{\text{(% change in EBIT)}} = \frac{\text{(% change in EPS)}}{\text{(% Change in Sales)}}
\]
\[
\text{DTL} = \frac{Q(P-V)}{(Q(P-V)-F-I)} = \frac{(S-TVC)}{(S-TVC-F-I)}
\]

Breakeven Quantity Of Sales,
\[
\text{QBE} = \frac{(\text{Fixed perating costs} + \text{Fixed financing costs})}{(\text{Price-Variable cost per unit})}
\]

DIVIDENDS AND SHARE REPURCHASE BASICS

Eps after buyback
\[
\text{Eps after buyback} = \frac{\text{(Total earnings-After tax cost of funds)}}{\text{(Shares outstanding after buyback)}}
\]

WORKING CAPITAL MANAGEMENT

Cost of trade credit
\[
\text{Cost of trade credit} = (1 + \frac{\text{(%discount)}}{\text{(1-%discount)}}) \cdot \frac{365}{\text{days past discount}} - 1
\]
PORTFOLIO RISK AND RETURN: PART II

<table>
<thead>
<tr>
<th>Page</th>
<th>Formula/Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>Expected return when one asset is invested in risky asset and one asset in risk free asset: $E(R_p) = W_A E(R_A) + w_B E(R_B)$, $W_B = 1 - W_A$</td>
</tr>
<tr>
<td>156</td>
<td>Capital market line equation: $E(R_p) = R_f + \frac{(E(R_m) - R_f)}{(\sigma_m)} \sigma_p$</td>
</tr>
<tr>
<td>157</td>
<td>Total Risk = systematic risk + unsystematic risk</td>
</tr>
<tr>
<td>158</td>
<td>General form of multifactor model: $E(R_i) - R_f = \beta_{i1}E(Factor\ 1) + \beta_{i2}E(Factor\ 2) + \ldots \ldots + \beta_{ik}E(Factor\ k)$</td>
</tr>
<tr>
<td>159</td>
<td>Equation of SML: $E(R_i) = R_f + \frac{(E(R_m) - R_f)}{(\text{Variance of Market})} \text{(Cov}_i\text{,mkt)}$</td>
</tr>
<tr>
<td>160</td>
<td>$M\ Square = \frac{(R_p - R_f)}{(\text{Std Dev of m})} - (R_m - R_f)$</td>
</tr>
<tr>
<td>161</td>
<td>Treynor Measure: $\text{Jenson's\ Alpha = } \alpha_p = R_p - (R_f + \beta_p(R_m - R_f))$</td>
</tr>
<tr>
<td>162</td>
<td>Margin call price = $P_0 \frac{((1\text{-initial margin}))}{((1\text{-maintenance margin})}$</td>
</tr>
</tbody>
</table>

SECURITY MARKET INDICES

<table>
<thead>
<tr>
<th>Page</th>
<th>Formula/Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>Compounded Returns: $R_p = (1 + R1)(1 + R2)(1 + R3) \ldots \ldots (1 + R_k) - 1$ $K =$ last sub period</td>
</tr>
<tr>
<td>165</td>
<td>Price weighted Index = $\frac{\text{(Sum of stock prices)}}{\text{(Number of stocks in index adjusted for splits})}$</td>
</tr>
<tr>
<td>166</td>
<td>Market weighted Index, $\text{Current\ index\ value = } \frac{\text{(Current\ total\ market\ value\ of\ index\ stocks)}}{\text{(Base\ year\ total\ market\ value\ of\ index\ stocks})} \times \text{Base\ year\ index\ value}$</td>
</tr>
<tr>
<td>167</td>
<td>Equal weighting index, $\text{New\ index\ value = Initial\ index\ value \times (1 + \text{Change\ in\ index})}$</td>
</tr>
</tbody>
</table>
| 168 | Dividend discount model,
One year holding period:
\[V_0 = \frac{D_t}{(1 + ke)} + \frac{(\text{Year End Price})}{(1 + ke)} \]
\[V_0 = \text{Current stock value} \]
\[D_t = \text{Dividend at time } t \]
\[ke = \text{Required rate of return} \]
\[\text{Two year holding period DDM,} \]
\[\text{Value} = \frac{D_1}{(1 + ke)} + \frac{D_2}{(1 + ke)^2} + \frac{P_2}{(1 + ke)^2} \]
\[\text{Multi-stage dividend discount model:} \]
\[\text{Value} = \frac{D_1/ (1 + ke)}{1} + \frac{D_2/ (1 + ke)^2}{1} + \frac{D_n/ (1 + ke)^n}{1} + \frac{P_n}{1} \]
\[P_n = \frac{(D_n + 1)}{(ke-gc)} \] |
|---|---|
| 169 | Free cash to equity,
FCFE = net income + depreciation-increase in working capital-fixed capital investment-debt principal repayments + new debt issues
FCFE = CFO-FC investment + net borrowing
CFO = Cash flow from operations. |
| 170 | Preferred stock value = \[\frac{D_p}{kp} \]
\[D_p = \text{Fixed dividend} \]
\[Kp = \text{Required rate of return} \] |
| 171 | Enterprise Value (EV)
EV = market value of common and preferred stock + market value of debt –cash and short term investment |
| 172 | Trailing P/E = \[\frac{(\text{Market price per share})}{(\text{EPS over previous 12 months})} \] |
| 173 | Leading P/E = \[\frac{(\text{Market price per share})}{(\text{Forecast EPS over next 12 months})} \] |
| 174 | P/B Ratio = \[\frac{(\text{Market value of equity})}{(\text{Book value of equity})} = \frac{(\text{Market price per share})}{(\text{Book value per share})} \]
Book value of equity = common shareholders equity = (total assets- total liabilities)-preferred stock |
INTRODUCTION TO FIXED INCOME VALUATION

175 P/S Ratio = \frac{(\text{Market value of equity})}{(\text{Total sales})}

176 P/CF Ratio = \frac{(\text{Market value of equity})}{(\text{Cash flow})}

UNDERSTANDING FIXED INCOME RISK AND RETURN

177 Price of annual coupon bond,
\[
\text{Price} = \frac{\text{Coupon}}{(1+\text{YTM})} + \frac{\text{Coupon}}{(1+\text{YTM})^2} + \ldots + \frac{\text{Principal + Coupon}}{(1+\text{YTM})^n}
\]

\text{YTM} = \text{Yield to maturity}

Price of semi-annual coupon bond,
\[
\text{Price} = \left(1 + \frac{\text{YTM}}{2}\right) \left(1 + \frac{\text{YTM}}{2}\right)^2 + \ldots + \left(1 + \frac{\text{YTM}}{2}\right)^n 2
\]

178 Full Price = Flat price + Accrued interest

179 Current Yield = \frac{(\text{Annual cash coupon payment})}{(\text{Bond price})}

180 Relation between forward rates and spot rates,
\[(1 + s_2) = (1 + S^1)(1 + 1y1y)\]

181 Option Value = \text{z spread} – OAS

182 Modified duration,
For annual pay bond:
\text{Modified duration} = \text{Macaulay duration}/ (1+\text{YTM})

For semi-annual bond,
\text{ModDursemi} = \text{MacDur}/(1+\text{YTM}/2)
\text{V}_- = \text{price increase}
\text{V}_+ = \text{price decrease}
\text{V}_0 = \text{current price}
\text{Approximate modified duration} = \frac{(\text{V}_- - \text{V}_+)}{2\text{V}_0\Delta\text{YTM}}

183 Approximate % change in bond price = -\text{ModDur} \times \Delta\text{YTM}

184 Effective duration = \frac{(\text{V}_- - \text{V}_+)}{2\text{V}_0\Delta\text{Curve}}
<table>
<thead>
<tr>
<th>Page</th>
<th>Formula/Definition</th>
</tr>
</thead>
</table>
| 185 | Portfolio duration = $W_1D_1 + W_2D_2 + \ldots + W_nD_n$
| | $W =$ Weight = Full price/total value
| | $D =$ Duration on bond |
| 186 | Money duration = annual modified duration * full price of bond position
| | Money Duration per 100 units of par value = annual modified duration * full price per 100 of par value |
| 187 | Price value of a basis point (PVBP) = Average of decrease in value of bond when YTM increases and increase in value of bond when YTM decreases |
| 188 | Approximate Convexity = $V - V_+ -2V_o / (\Delta \text{curve})^2 Vo$ |
| 189 | % change in Bond Price (when duration and convexity are given)
| | $%\Delta \text{Bond Value} = -\text{duration} \,(\Delta \text{spread}) + 1/2 \text{convexity} \,(\Delta \text{spread})^2$ |
| 190 | Duration Gap = Macaulay duration - Investment horizon |
| 191 | Return impact (% change in bond price)
| | For small spread changes,
| | Return impact = -Modified duration * ΔSpread
| | For larger spread changes,
| | Return impact = -Modified duration * $\Delta \text{Spread} + 1/2 \text{convexity} \,(\Delta \text{spread})^2$ |
| 192 | Yield spread = liquidity premium + credit spread |
| 193 | Payment to the long at settlement,
| | $\left(\frac{\text{(floating-forward)}}{360} \right) \left(\frac{\text{days}}{360} \right)$
| | (notional principal)
| | $1 + \left(\frac{\text{(floating)}}{360} \right) \left(\frac{\text{days}}{360} \right)$
| | Days = number of days in the loan term |
| 194 | Intrinsic value of call option,
| | $C = \max [0,S-X]$
| | $C =$ Intrinsic Value of Call option
| | $S =$ Spot price
| | $X =$ Strike price |
| 195 | Intrinsic value of a put option,
| | $P = \max [0,X-S]$
<p>| | $P =$ intrinsic value of put |</p>
<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>196</td>
<td>Option value = intrinsic value + time value</td>
</tr>
</tbody>
</table>
| 197 | Put-call parity:
\[C + X/(1+RFR)^t = S + P \]
C = Call
P = Put
S = Stock
X = Present value |
| 198 | Put call parity with assets cashflows,
\[C + X/(1+RFR)^t = (S_0 - PVcf) + P \] |
| 199 | Plain vanilla interest rate swap,
\[(\text{Net fixed rate payment})^t = (\text{Swap rate} - \text{LIBOR}_t - 1) \times \frac{(\text{Number of days})}{360} \times \text{notional principal} \] |
For more details call to ICFL Team

<table>
<thead>
<tr>
<th>Region</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>West</td>
<td>+91 8588816146 +91 7838352716</td>
</tr>
<tr>
<td>North</td>
<td>+91 9999560943 +91 7838352716</td>
</tr>
<tr>
<td>South</td>
<td>+91 9739830119 +91 7838352716</td>
</tr>
<tr>
<td>East</td>
<td>+91 9999346802 +91 7838352716</td>
</tr>
</tbody>
</table>

Email: learning@icicisecurities.com | Website: learning.iccidirect.com
SMS ‘EDU CFA’ to 5676766

ICICI Securities Ltd. (I-Sec). Registered office of I-Sec is at ICICI Securities Ltd. - ICICI Centre, H. T. Parekh Marg, Churchgate, Mumbai - 400020, India, Tel No.: 022 - 2288 2460, 022 - 2288 2470. The contents herein above shall not be considered as an invitation or persuasion to trade or invest. These programmes do not guarantee any job or placements with ICICI Group or any other organisation. Participants should make independent judgment with regard suitability, profitability, and fitness of any program offered herein above. I-Sec and affiliates accept no liabilities for any loss or damage of any kind arising out of any actions taken in reliance thereon. This mail is not directed or intended for distribution to, or use by, any person or entity who is a citizen or resident of or located in any locality, state, country or other jurisdiction, where such distribution, publication, availability or use would be contrary to law, regulation or which would subject I-Sec and affiliates to any registration or licensing requirement within such jurisdiction. CFA® is a registered trademark of the CFA institute. CFA Institute does not endorse, promote, or warrant the accuracy or quality of the products or services offered by ICICIdirect Centre for Financial Learning. Chartered Financial Analyst® (CFA®) are trademarks owned by CFA Institute.